Меню

Что придает окраску клетке растений

Клеточное строение растительного организма

Рассмотрим строение растительной клетки под микроскопом.
Видны продолговатые клетки, плотно прилегающие одна к другой. Каждая клетка имеет плотную прозрачную оболочку, в которой местами есть более тонкие участки — поры. Под оболочкой находится живое бесцветное вязкое вещество — цитоплазма. Цитоплазма медленно движется. Движение цитоплазмы способствует перемещению в клетках питательных веществ и воздуха. При сильном нагревании и замораживании цитоплазма разрушается, и тогда клетка погибает. В цитоплазме находится небольшое плотное тельце — ядро, в котором можно различить ядрышко. С помощью электронного микроскопа было установлено, что ядро имеет очень сложное строение.
Почти во всех клетках, особенно в старых, хорошо заметны полости — вакуоли (от латинского слова «вакуус» — пустой). Они заполнены клеточным соком. Клеточный сок — это вода с растворенными в ней сахарами и другими органическими и неорганическими веществами.
В цитоплазме растительной клетки находятся многочисленные мелкие тельца — пластиды. При большом увеличении пластиды хорошо видны. В клетках разных органов растений число их различно. От цвета пластид и от красящих веществ, содержащихся в клеточном соке, зависит окраска тех или иных частей растений. Зеленые пластиды называют хлоропластами.
Все органы растений состоят из клеток. Следовательно, растение имеет клеточное строение, и каждая клетка — это микроскопическая составляющая часть растения. Клетки прилегают одна к другой и соединены особым межклеточным веществом, которое находится между оболочками соседних клеток. Если все межклеточное вещество разрушается, клетки разъединяются.
Нередко живые растущие клетки всех органов растения несколько округляются. При этом их оболочки местами отходят друг от друга; в этих участках межклеточное вещество разрушается. Возникают межклетники, заполненные воздухом. Сеть межклетников соединяется с воздухом, окружающим растение, через особые межклетники, расположенные на поверхности органов.

Каждая живая клетка дышит, питается и в течение определенного времени растет. Вещества, необходимые для питания, дыхания и роста клетки, поступают в нее из других клеток и из межклетников, а все растение получает их из воздуха и почвы. Сквозь клеточную оболочку проходят в виде растворов почти все вещества, необходимые для жизни клетки.

ДЕЛЕНИЕ КЛЕТКИ

Делению клетки предшествует деление ее ядра. Перед делением клетки ядро увеличивается и в нем становятся хорошо заметными тельца обычно циллиндрической формы — хромосомы (от греческих слов «хромо» — цвет, «сома» — тело). Они передают наследственные признаки от клетки к клетке. Перед деление число хромосом удваивается. Все живое содержимое клетки также равномерно распределяется между новыми клетками. Итак, деление клетки начинается с деления ядра и каждая из образовавшихся клеток содержит то же самое число хромосом, что и ядро исходной клетки.
Молодые клетки, в отличие от старых, неспособных делиться, содержат много мелких вакуолей. Ядро молодой клетки располагается в центре. В старой клетке обычно имеется одна большая вауоль, а цитоплазма, в которой находится ядро, прилегает к клеточной оболочке. Молодые, недавно возникшие клетки увеличивются и снова делятся. Так в результате деления и роста клеток растут все органы растения.

ТКАНИ КЛЕТКИ

Группу клеток, имеющих сходное строение и выполняющих одинаковые функции, называют тканью. Органы растений сложены разными тканями.
Ткань, клетки которой постоянно делятся, называют образовательной.
Покровные ткани защищают растения от неблагоприятных воздействий внешней среды.
За проведением веществ во все органы растения отвечает проводящая ткань.
В клетках запасающей ткани откладываются в запас питательные вещества.
В зеленых клетках ткани листьев и молодых стеблей происходит фотосинтез. Такие ткани называют фотосинтезирующими.
Механическая ткань придает прочность органам растения.

Источник

Bio-Lessons

Образовательный сайт по биологии

Строение растительной клетки. Химический состав.

Клетка – основная структурная единица жизни. Для живого характерно клеточное строение: человек и растение, кролик и амеба. Амеба состоит из одной клетки, а лист груши – это 50 млн клеток. Если организм одноклеточный, то его процессы (питание, дыхание, выделение, рост, размножение и т. д.) выполняет одна клетка. В сложном многоклеточном организме каждая клетка является маленькой структурой и выполняет свои определенные функции. Как бы ни отличались клетки разных животных и растений друг от друга, в их строении много общего. Заглянуть в таинственный микромир, не видимый простым глазом, поможет даже школьный микроскоп. Рассматривая препарат под микроскопом, можно увидеть множество круглых, продолговатых и квадратных клеток, плотно прилегающих друг к другу (рис.1).

Читайте также:  Необычные животные и растения африки

Рис.1 Разнообразие растительных клеток

История открытия клеточного строения растений связана с именем английского естествоиспытателя Роберта Гука, который в 1665 году с помощью собственноручно собранного микроскопа рассмотрел тонкий срез пробки дерева (рис.2). Обнаруженные мелкие ячейки он назвал “клетками”. В последствии данный термин был введен в науку.

Рис.2 Рисунок Роберта Гука

Строение растительной клетки.
Каждая растительная клетка состоит из клеточной оболочки, цитоплазмы и ядра (рис.3).

Оболочка покрывает клетку снаружи. В отличие от животной, растительная клетка окружена как бы двумя оболочками. Наружная плотная оболочка не растворяется в горячий воде. Тонкие участки ее называются порами. Через поры осуществляется обмен веществ между клетками. Оболочка придает клетке определенную форму и прочность, защищает внутренние части клетки от повреждения и высыхания. Плотность оболочки определяется входящей в ее состав клетчаткой.

Рис.3 Строение растительной клетки

Цитоплазма – прозрачное, слизистое вещество, похожее на белок яйца. В составе цитоплазмы имеются вода, белки, жиры и сахара, которые участвуют во всех сложных жизненных процессах. Цитоплазма живой клетки пребывает в беспрерывном движении. В цитоплазме находятся ядро, пластиды, одна крупная или несколько небольших вакуолей.

Вакуоль – полость в цитоплазме, заполненная клеточным соком. Это кладовая клетки. Клеточный сок представляет собой раствор органических кислот, витаминов, солей, пигментов, запасаемых веществ и других соединений. При необходимости они используются клеткой. Вакуоль – это и место запаса воды. Вакуоль регулирует давление клеточной жидкости, определяя тем самым упругость тканей. При изменении давления растение увядает.

Ядро ответственно за передачу наследственных признаков при размножении. Оно контролирует все жизненные процессы клетки. Ядро более плотное, чем цитоплазма, имеет округлую форму. Его оболочка, как и оболочка клетки, тоже имеет утонченные участки – поры. Через них происходит непрерывный обмен веществ между цитоплазмой и ядром. Ядро принимает участие и размножении клетки.

Источник

Особенности строения и основные органеллы растительных клеток

Растения уникальные среди эукариот организмы, чьи клетки имеют дополнительную оболочку, поверх плазматической мембраны и органеллы, которые помогают производить свою собственную пищу. Хлорофилл придает растениям зеленый окрас и позволяет использовать солнечный свет в процессе фотосинтеза для преобразования воды и углекислого газа в сахара и углеводы — вещества, используемые клеткой в качестве источника энергии.

Характеристика растений и их клеток

Как и грибы, растительные клетки сохранили защитную клеточную стенку от своих предков. Типичная клетка растений имеет сходное строение с типичной эукариотной клеткой, но не имеет центриолей, лизосом, промежуточных волокон, ресничек или жгутиков, как животная клетка. Однако клетки растений обладают рядом других специализированных структур, включая жесткую клеточную стенку, центральную вакуоль, плазмодесмату и хлоропласты. Хотя растения (и их типичные клетки) не подвижны, некоторые виды производят гаметы (половые клетки), которые обладают жгутиками и, следовательно, способны двигаться.

Все растения можно разделить на два основных типа: сосудистые и несосудистые. Сосудистые растения считаются более развитыми, чем несосудистые, потому что имеют специализированные ткани: ксилему, которая участвует в структурной поддержке и водопроводности, а также флоэму, которая является транспортной системой для продуктов фотосинтеза. Следовательно, они также обладают корнями, стеблями и листьями, представляющими более высокую форму организации, отсутствующую в растениях без сосудистых тканей.

Несосудистые растения, входящие в группу мохообразные, обычно не более 3-5 см в высоту, так как не имеют структурной поддержки, характерной сосудистым растениям. Они также в большей степени зависят от окружающей среды, чтобы поддерживать соответствующее количество влаги и, как правило, встречаются во влажных затемненных местах.

По оценкам, сегодня в мире насчитывается не менее 260 000 видов растений. Они варьируются по размеру и сложности от небольших мхов до гигантских секвой, самых больших живых организмов на планете, растущих до 100 м. Лишь малый процент от этих видов, непосредственно используется людьми для питания, жилья и медицины.

Тем не менее, растения являются основой экосистемы и пищевой цепи на Земле, и без них сложные формы жизни, такие как животные (включая людей), никогда бы не развились. Действительно, все живые организмы напрямую или косвенно зависят от энергии, создаваемой фотосинтезом, а побочный продукт этого процесса — кислород жизненно необходим для животных. Растения также уменьшают количество углекислого газа, присутствующего в атмосфере, препятствуют эрозии почв, влияют на уровень и качество воды.

Читайте также:  Зеленый пушок на растениях аквариум

Растениям свойственны жизненные циклы, которые включают чередование поколений диплоидных форм, содержащих парные наборы хромосом в ядрах клеток и гаплоидные формы, которые обладают только одним набором. Как правило, эти две формы растения очень разные по внешнему виду. В высших растениях диплоидная фаза, известная как спорофит (из-за способности вырабатывать споры), обычно доминирует и более узнаваема, чем генерация гаплоидных гаметофитов. Однако у мохообразных, поколение гаметофит является доминирующим и физиологически необходимым для фазы спорофит.

Животные должны потреблять белок для получения азота, но растения могут использовать неорганические формы этого элемента и, следовательно, не нуждаются во внешнем источнике белка. Однако растениям обычно требуется значительное количество воды, которое необходимо для процесса фотосинтеза, для поддержания структуры клеток, облегчения роста и в качестве средства доставки питательных веществ к растительным клеткам.

Количество и типы питательных веществ, необходимых для разных видов растений, значительно различается, однако некоторые элементы необходимы растениям в больших количествах. Эти питательные вещества включают кальций, углерод, водород, магний, азот, кислород, фосфор, калий и серу. Также, есть несколько микроэлементов, которые требуются растениями в меньших количествах: бор, хлор, медь, железо, марганец, молибден и цинк.

Строение растительных клеток

Далее приведен список и краткая характеристика основных органелл клеток растений. Для более детальной информации переходите по ссылкам ниже:

  • Клеточная стенка. Как и их прокариотические предки, растительные клетки имеют жесткую оболочку, окружающую плазматическую мембрану. Однако это гораздо более сложная структура, которая выполняет множеству функций — от защиты клетки до регулирования жизненного цикла растительного организма.
  • Хлоропласты. Самой важной характеристикой растений является их способность фотосинтезировать, по сути, производить свою собственную пищу, превращая световую энергию в химическую энергию. Этот процесс осуществляется в специализированных органеллах, называемых хлоропластами.
  • Эндоплазматический ретикулу — сеть мешочков, которая производит, обрабатывает и переносит химические соединения для использования внутри и вне клетки. Он связан с двухслойной ядерной оболочкой, обеспечивающей трубопровод между ядром и цитоплазмой. В растениях эндоплазматический ретикулум также соединяется между клетками через плазмодесмату.
  • Аппарат Гольджи — это отдел распределения и доставки химических веществ клетки. Он модифицирует белки и жиры, встроенные в эндоплазматический ретикулум, и готовит их для экспорта.
  • Микрофиламенты — твердые стержни из глобулярных белков, называемые актином. Они выполняют структурную поддержку и являются основным компонентом цитоскелета.
  • Микротрубочки — прямые, полые цилиндры, обнаруженные в цитоплазме всех эукариотических клеток (у прокариот они отсутствуют) и выполняют различные функции, от транспортировки до поддержки структуры.
  • Митохондрии — вытянутые органеллы, которые также присутствуют в цитоплазме всех эукариотических клеток. В растительных клетках они перерабатывают молекулы углеводов и сахара, чтобы обеспечить клетку энергией, особенно когда свет не доступен для хлоропластов.
  • Ядро — важная органелла, которая служит в качестве информационно-административного центра клетки и выполняет две основные функции: 1) хранит наследственный материал клетки или ДНК и координирует деятельность клетки (рост, посредственный метаболизм, синтез белка и деление клеток).
  • Пероксисомы — окруженные одной мембраной округлые органеллы, встречающиеся в цитоплазме клеток.
  • Плазмодесмы — небольшие трубки, соединяющие растительные клетки друг с другом, обеспечивая живые мостики между ними.
  • Плазматическая мембрана. Все живые клетки имеют мембрану, которая окружает их содержимое. В прокариотах и ​​растениях мембрана представляет собой внутренний слой защиты, окруженный жесткой клеточной стенкой. Эти мембраны также регулируют прохождение молекул внутрь или из клеток.
  • Рибосомы. Все клетки живых организмов имеют рибосомы, состоящие из приблизительно 60% РНК и 40% белка. У эукариот рибосомы включают четыре нити РНК, а у прокариот — три нити РНК.
  • Вакуоль. Каждая растительная клетка имеет большую одиночную вакуоль, которая хранит соединения, помогает в росте и играет важную структурную роль для растений.

Источник

Чудеса биохимии: антицианы или почему изменяется цвет листьев, цветов и плодов

В одной старинной книге описан фокус с букетом тюльпанов. Вначале зритель видит вазу с алыми цветами, затем фокусник накрывает ее непрозрачным колпаком, а когда тот снимается, тюльпаны оказываются… синими! Секрет опыта – в антоцианах, окрашенных растительных гликозидах.

Читайте также:  Используя знания полученные при изучении биологии растений объясните почему

Антоцианы – естественные природные пигменты, которые содержатся в растениях, придавая окраску от розовой, красной, оранжевой до фиолетовой, пурпурной и синей их плодам и листьям. Причем цвет растения зависит от степени кислотности среды клеток растения. А разгадка фокуса с тюльпанами в том, что в вазу, где они стояли, незаметно налили нашатырный спирт, обладающий щелочными свойствами. Он, испаряясь, проник в ткани растений, воздействовал на антоцианы, и цвет лепестков изменились с красного на синий.

Можно и самому провести нехитрый опыт. Возьмите лист белой бумаги, потрите его лепестками цветков или соком плодов так, чтобы осталось пятно. Капните лимонным соком или другой какой-либо кислотой на край пятна, и вы увидите, что оно стало ярко-розовым. А капля щелочи на другой край листа вызовет появление синего цвета с зеленоватым оттенком. Антоцианы чутко реагируют на кислотность!

А в природе изменения окраски лепестков происходят без какого-то либо нашего участия. Всем известно, что у медуницы молодые цветки имеют розовый оттенок, а старые постепенно становятся синими. У сиреневых и фиолетовых сортов флоксов оттенок окраски лепестков меняется в течение суток. Дело здесь также в изменении кислотности. Днем клеточный сок более кислый, и проявляется розоватый оттенок, а к вечеру среда становится более щелочной, и окраска приобретает холодные, синие тона. Осеннее изменение цвета листьев на красную и пурпурную также связано с разрушением хлорофилла, который зачастую маскирует присутствие антоцианов.

Растительные пигменты содержатся как в генеративных органах (цветках, пыльце) растений, так и в вегетативных (стеблях, листьях, корнях), а также в плодах и семенах. Очень редко встречается накапливание антоцианов в корнях, но если это происходит, то появляется, например, такая редкость как темно-фиолетовый, почти черный сорт моркови или картофеля.

На сегодня открыто и описано более 500 антоциановых соединений, и число их постоянно увеличивается. Характерная особенность их химического строения — С15-углеродный скелет — два бензольных кольца А и В, соединенные С3-фрагментом, который с атомом кислорода образует γ-пироновое кольцо (С-кольцо, рис. 3). При этом от других флавоноидных соединений антоцианы отличаются наличием положительного заряда и двойной связи в С-кольце.

Для чего же растениям нужны антоцианы? Ну, во-первых, для привлечения насекомых-опылителей и животных, которые распространяют плоды. Во-вторых, антоцианы, поглощая заметную часть солнечной энергии, служат растению защитой от ультрафиолетовых лучей. Если подняться в горы на большую высоту, то можно заметить, что голубая окраска у цветов, растущих на равнине, сменится выше в горах на темно-синюю.

Учеными замечено – антоцианы могут присутствовать в клетках постоянно, появляться в какой-то период роста и развития растения или вырабатываются под воздействием стресса. Последнее обстоятельство навело ученых на мысль, что антоцианы нужны не только для того, чтобы яркой окраской привлекать насекомых-опылителей и распространителей семян, но и для борьбы с различными типами стрессов.

Например, антоцианы, по-видимому, служат растениям для защиты от негативного действия тяжелых металлов, образуя с ними прочные комплексы. В качестве примера обычно приводят широко известную историю о розовой гортензии, которая на кислых почвах может изменить цвет на синий.

Казалось бы, в кислой среде розовая окраска должна проявляться сильнее. Однако в этом случае повышается растворимость ионов металлов, в основном, алюминия. Токсичный алюминий поглощается растением, и локализуется вместе с антоцианами, образуя сложные соединения. По этой причине происходит изменение окраски.

Поэтому чтобы получить голубые гортензии, розовые сорта поливают раствором алюмокалиевых квасцов. Однако с этой процедурой следует быть особенно осторожным, так как превышение дозы может привести к гибели растения.

Таким образом, синтез антоцианов растениями, действительно, связан с разнообразными стрессами, хотя их защитные механизмы еще до конца не изучены.

Зато не вызывает никаких сомнений значение антицианов для организма человека!

Так, ежедневная доза приема этих веществ должна составлять

Понравилась статья? Ставьте лайки! И подписывайтесь на наш журнал «ХИМАГРЕГАТЫ» в Яндекс ДЗЕН, чтобы получать познавательные статьи у себя в ленте!

Источник