Меню

Что происходит с растениями в темноте

Ночная жизнь растений

Орхидея Dendrobium speciosum, раскрывающая цветы только ночью

Что «делают» растения ночью? На этот вопрос так и хочется ответить: «Отдыхают». Ведь, казалось бы, вся «активная жизнь» растения происходит днем. В дневные часы цветы раскрываются и опыляются насекомыми, развертываются листья, молодые стебли растут и тянут свои верхушки к солнцу. Именно в течение светлого времени суток растения используют солнечную энергию для того, чтобы преобразовывать углекислый газ, поглощаемый ими из атмосферного воздуха, в сахар.

Однако растение не только синтезирует органические вещества – оно их и использует в процессе дыхания, снова окисляя до углекислого газа и поглощая при этом кислород. Но количество кислорода, необходимого растениям для дыхания, примерно в 30 раз меньше того, что выделяется ими в процессе фотосинтеза. Ночью, в темноте, фотосинтез не происходит, но и в это время растения потребляют так мало кислорода, что это нисколько не сказывается на нас с вами. Поэтому старая традиция выносить растения из комнаты больного на ночь совершенно не обоснованна.

Карликовый поссум опыляет соцветия эвкалипта

А еще есть ряд видов растений, которые потребляют углекислый газ именно ночью. Поскольку энергии солнечного света, необходимой для полного восстановления углерода, в это время нет, сахар, конечно, не образуется. Но поглощенная из воздуха углекислота сохраняется в составе яблочной или аспарагиновой кислот, которые потом, уже на свету, вновь разлагаются, высвобождая СО2. Именно эти молекулы углекислого газа включаются в цикл основных реакций фотосинтеза – так называемый цикл Кальвина. У большинства же растений этот цикл начинается с захвата молекулы СО2 непосредственно из воздуха. Такой «простой» способ носит название С3-пути фотосинтеза, а если углекислый газ предварительно запасается в яблочной кислоте – это С4-путь.

Казалось бы, зачем нужны дополнительные сложности? В первую очередь для того, чтобы экономить воду. Ведь поглощать углекислоту растение может только через открытые устьица, через которые происходит и испарение воды. И днем, в жару, воды через устьица теряется намного больше, чем ночью. А у С4-растений устьица днем закрыты, и вода не испаряется. Газообмен же эти растения осуществляют в прохладные ночные часы. Кроме того, С4-путь в целом более эффективен, он позволяет синтезировать большее количество органических веществ в единицу времени. Но только в условиях хорошей освещенности и при достаточно высокой температуре воздуха.

Так что С4-фотосинтез свойствен «южанам» – растениям из жарких областей. Он присущ большинству кактусов, некоторым другим суккулентам, ряду бромелиевых – например всем хорошо известному ананасу (Ananas comosus), сахарному тростнику и кукурузе.

Интересно, что еще в 1813 г., задолго до того, как стали известны биохимические реакции, лежащие в основе фотосинтеза, исследователь Бенджамин Хейн написал в Линнеевское научное общество о том, что листья ряда суккулентных растений имеют особенно острый вкус по утрам, а затем, к середине дня, их вкус становится более мягким.

Способность использовать связанный в органических кислотах СО2 обусловлена генетически, но реализация этой программы находится и под контролем внешней среды. При сильном дожде, когда угрозы высыхания нет, а освещенность невысока, С4-растения могут открывают свои устьица днем и переходить на обычный С3-путь.

А что еще может происходить с растениями по ночам?

Некоторые виды приспособились привлекать своих опылителей именно в ночные часы. Для этого они используют разные средства: и усиливающийся к ночи запах, и приятный и заметный для глаза ночных опылителей цвет – белый или желтовато-бежевый. На такие цветы летят ночные бабочки. Именно они опыляют цветы жасмина (Jasminum), гардении (Gardenia), лунных цветов (Ipomea alba), вечерницы, или ночной фиалки (Hesperis), любки двулистной (Platanthera bifolia), лилии кудреватой (Lilium martagon) и ряда других растений.

Lilium martagon, старинный рисунок

А есть растения (их называют хироптерофильными), которые опыляются в ночные часы летучими мышами. Больше всего таких растений в тропиках Азии, Америки и Австралии, меньше в – Африке. Это бананы, агавы, боабабы, некоторые представители семейств миртовых, бобовых, бегониевых, геснериевых, синюховых.

Цветки хироптерофильных растений раскрываются только с наступлением сумерек и не отличаются яркостью окраски – как правило, они зеленовато-желтые, коричневые или фиолетовые. Запах у таких цветков весьма специфический, часто неприятный для нас, но, наверное, привлекательный для летучих мышей. Кроме того, цветки хироптерофильных растений обычно крупные, с прочным околоцветником и снабжены «посадочными площадками» для своих опылителей. В качестве таких площадок могут выступать толстые цветоножки и цветоносы или безлистные участки ветвей, примыкающих к цветкам.

Перохвостый поссум опыляет соцветие банксии

Некоторые хироптерофильные растения даже «разговаривают» со своими опылителями, привлекая их. Когда цветок лианы Mucuna holtonii, принадлежащей к семейству бобовых и произрастающей в тропических лесах Центральной Америки, становится готовым к опылению, один из его лепестков приобретает специфическую вогнутую форму. Этот вогнутый лепесток концентрирует и отражает сигнал, издаваемый летучими мышами, отправившимися на поиски корма, и таким образом сообщает им о своем местонахождении.

Но не только рукокрылые млекопитающие опыляют цветы. В тропиках известно более 40 видов зверьков из других отрядов, активно участвующих в опылении около 25 видов растений. У многих из этих растений, как и у тех, которые опыляются летучими мышами, цветки крупные и прочные, часто неприятно пахнущие и образующие большое количество пыльцы и нектара. Обычно число цветков на таких растениях или в их соцветиях невелико, цветки располагаются низко над землей и раскрываются только к ночи, чтобы обеспечить максимальное удобство ночным зверюшкам.

Читайте также:  Кто доказал что растения очищают воздух

Ночная жизнь цветов не ограничивается привлечением опылителей. Целый ряд растений закрывает лепестки на ночь, но при этом внутри цветка остаются ночевать насекомые. Наиболее известным примером подобной «гостиницы» для насекомых, является амазонская лилия (Victoria amasonica). Впервые европейцы увидели ее в 1801 г., а подробное описание растения было сделано в 1837 г. английским ботаником Шомбургом. Ученый был просто потрясен и его гигантскими листьями, и чудесными цветами и назвал цветок «Нимфея Виктория», в честь английской королевы Виктории.

Семена виктории амазонской впервые были присланы в Европу в 1827 г., но тогда они не проросли. В 1846 г. семена отправили в Европу снова, на этот раз в бутыли с водой. И они не только отлично перенесли дорогу, но и развились в полноценные растения, которые через 3 года зацвели. Произошло это в ботаническом саду «Кью» в Англии. Весть о том, что виктория должна зацвести, быстро распространилась не только среди служащих ботанического сада, но и среди художников и репортеров. В оранжерее собралась огромная толпа. Все с нетерпением следили за часами, ожидая раскрытия цветка. В 5 часов вечера еще закрытый бутон поднялся над водой, его чашелистики раскрылись и появились снежно-белые лепестки. По оранжерее распространился замечательный запах зрелого ананаса. Через несколько часов цветок закрылся и опустился под воду. Снова он появился только в 7 часов вечера следующего дня. Но, к удивлению всех присутствующих, лепестки чудо-цветка были уже не белые, а ярко-розовые. Вскоре они стали опадать, при этом их окраска становилась все более и более интенсивной. После полного опадения лепестков началось активное движение тычинок, которое, по свидетельству присутствующих, даже было слышно.

Но кроме необыкновенной красоты у цветков виктории есть еще удивительные особенности, связанные с привлечением насекомых. В первый день температура в белом цветке виктории повышается по сравнению с окружающим воздухом примерно на 11°С, и к вечеру, с наступлением прохлады, в этом «тепленьком местечке» скапливается большое количество насекомых. Кроме того, на плодолистиках цветка образуются особые пищевые тельца, также привлекающие опылителей. Когда цветок закрывается и опускается под воду, вместе с ним опускаются и насекомые. Там они проводят ночь и весь следующий день, – до тех пор, пока цветок снова не поднимется на поверхность. Только теперь он уже холодный и не ароматный, и насекомые, нагруженный пыльцой, летят в поисках новых теплых и ароматных белых цветов, чтобы опылись их, а заодно и переночевать в следующей теплой и безопасной «гостинице».

В столице Таиланда Бангкоке есть удивительно красивый храм «Изумрудный Будда». Множество изваяний Будды находится и внутри храма и около него. Верующие тайцы приносят своему богу подарки и цветы лотоса. Живые растения лотоса растут в специальных водоемах тут же рядом, радуя глаз своими удивительно красивыми цветами

Еще один, пожалуй, не менее красивый цветок также предоставляет своим опылителям ночные квартиры – это лотос. Есть два вида лотоса. В Старом Свете растет лотос орехоносный с розовыми, а в Америке – лотос американский с желтыми цветками. Лотос способен поддерживать внутри своих цветков относительно постоянную температуру – значительно более высокую, чем температура окружающего воздуха. Даже если снаружи всего +10°С, внутри цветка – +30. +35°С! Цветки лотоса разогреваются за 1–2 дня до раскрытия, и постоянная температура поддерживается в них в течение 2–4 дней. За это время созревают пыльники, а рыльце пестика становится способным воспринимать пыльцу.

Опыляют лотос жуки и пчелы, для активного полета которых нужна температура как раз около 30°С. Если насекомые оказываются в цветке после его закрытия и проводят ночь в тепле и уюте, активно передвигаясь и покрываясь пыльцой, то утром, когда цветок раскроется, они сразу же способны лететь на другие цветки. Таким образом «постояльцы» лотоса получают преимущество перед оцепеневшими насекомыми, проведшими ночь на холоде. Так тепло цветка, переданное насекомому, способствует процветанию популяции лотоса.

Многие представители семейства ароидных, такие как гигантский аморфофаллус (Amorphophallus titanus), всем хорошо известная монстера и филодендроны имеют черешки цветков, которые продуцируют тепло в ночные часы, усиливая запах и помогая насекомым-опылителям с максимальными удобствами провести ночь. Малоприятный запах аморфофаллуса привлекает, например, массу жуков, которые находят среди лепестков гигантского соцветия и теплую квартиру, и еду, и брачных партнеров. Еще одно интересное растение из семейства ароидных – Typophonium brownii – мимикрирует под кучки помета животных, привлекая к себе навозных жуков, которых «отлавливает» на ночь и заставляет переносить на себе свою пыльцу.

Вот так, по-разному, растения трудятся в ночные часы. Интересно, что среди цветковых растений есть и такие, которые вообще никогда не видят дневного света, и вся их жизнь проходит под покровом темноты. Это паразитические растения – фотосинтез в темноте невозможен, а вот для того, чтобы сосать соки из корней других растений, свет не нужен. Обычно на поверхности можно увидеть только цветы этих растений – да и то непродолжительное время, необходимое для их опыления. К подобным растениям относятся Петров крест (Lathraea squamaria) и заразиха (Orobanche). А вот у подземных орхидей родов Rhizanthella и Thismia, произрастающих в Австралии, даже цветы не показываются на поверхности. Их опыляют термиты и некоторые другие насекомые, живущие в почве. Так что эти орхидеи, можно сказать, ведут исключительно ночной образ жизни.

Источник

Что такое фотосинтез и почему он так важен для нашей планеты

Фотосинтез — один из самых важных биологических процессов на Земле. Благодаря фотосинтезу живые организмы получают кислород, необходимый для дыхания, а сами растения создают полезные органические вещества для своей жизнедеятельности. В этой статье мы поговорим о том, что обозначает фотосинтез, как он происходит и что образуется в процессе фотосинтеза.

Что такое фотосинтез

Фотосинтез — процесс, при котором в клетках, содержащих хлорофилл, под действием энергии света образуются органические вещества из неорганических. При фотосинтезе растение поглощает углекислый газ и воду, синтезирует органические вещества и выделяет кислород, как побочный продукт фотосинтеза.

Читайте также:  Сиреневые поля что за растение

Процессы фотосинтеза идут в тканях, содержащих хлоропласты, — преимущественно, в листе, на который приходится большая часть процессов фотосинтеза. Такая ткань называется хлоренхима, или мезофилл.

Строение хлоропластов

Чтобы понять, что происходит в растении при фотосинтезе, изучим подробнее хлоропласты. Хлоропласты — это особые пластиды растительных клеток, в которых происходит фотосинтез. Основные элементы структурной организации хлоропластов высших растений представлены на рис.1.

Хлоропласт — это двумембранный органоид. Внешняя мембрана проницаема для большинства органических и неорганических соединений. Она содержит специальные транспортные белки, благодаря которым нужные для работы хлоропласта пептиды и другие вещества попадают в него из цитоплазмы. Внутренняя мембрана обладает избирательной проницаемостью и способна контролировать, какие именно вещества попадут во внутреннее пространство хлоропласта.

Для хлоропластов характерна сложная система внутренних мембран, позволяющая пространственно организовать фотосинтетический аппарат, упорядочить и разделить реакции фотосинтеза, несовместимые между собой, и их продукты. Мембраны образуют тилакоиды, которые, в свою очередь, собираются в «стопки» — граны. Пространство внутри тилакоидов называется внутритилакоидным пространством, или люменом.

Внутреннее пространство хлоропласта между гранами заполняет строма — гидрофильный слабоструктурированный матрикс. В строме содержатся необходимые для реакций синтеза сахаров ферменты, а также рибосомы, кольцевая молекула ДНК, крахмальные зёрна.

Пигменты хлоропластов

Что происходит во время фотосинтеза? На молекулярном уровне фотосинтез обеспечивают особые вещества — пигменты, благодаря которым энергия солнечного света становится доступной для биологических систем. У фотосинтезирующих организмов можно выделить три основные группы пигментов:

  • Хлорофиллы:
  • хлорофилл а — у большинства фотосинтезирующих организмов,
  • хлорофилл b — у высших растений и зелёных водорослей,
  • хлорофилл c — у бурых водорослей,
  • хлорофилл d — у некоторых красных водорослей.
  • Каротиноиды:
  • каротины — у всех фотосинтезирующих организмов, кроме прокариот;
  • ксантофиллы — у всех фотосинтезирующих организмов, кроме прокариот
  • Фикобилины — красные и синие пигменты красных водорослей.

В хлоропластах пигменты ассоциированы с белками с помощью ионных, водородных и других типов связей. Не стоит забывать, что у растений есть множество других пигментов, находящихся не в хлоропластах и не принимающих участие в фотосинтезе — например, антоцианы.

Хлорофилл

Хлорофиллы выполняют функции поглощения, преобразования и транспорта энергии света. Лучше всего хлорофиллы поглощают свет в синей (430—460 нм) и красной (650—700 нм) областях спектра. Зелёную область спектра хлорофиллы эффективно отражают, что придаёт растению зелёный цвет.

Интересно, что строение молекулы хлорофилла схоже со строением гемоглобина, но центром молекулы хлорофилла является ион магния, а не железа.

Основными хлорофиллами высших растений являются хлорофилл a и хлорофилл b, они входят в состав реакционных центров фотосистем и светособирающих комплексов мембран тилакоидов хлоропластов. Светособирающие комплексы улавливают кванты света и передают энергию к фотосистемам I и II. Фотосистемы — это пигмент-белковые комплексы, играющие ключевую роль в световой фазе фотосинтеза.

Каротиноиды

Каротиноиды — это жёлтые, оранжевые или красные пигменты. В зелёных листьях каротиноиды обычно незаметны из-за наличия в листьях хлорофилла. При разрушении хлорофилла осенью именно каротиноиды придают листьям характерную жёлто-оранжевую окраску.

  • Антенная — входят в состав светособирающих комплексов, улавливают энергию света и передают её на хлорофиллы. Каротиноиды играют роль дополнительных светособирающих пигментов в той части солнечного спектра (450—570 нм), где хлорофиллы малоэффективны. Особенно это важно для водных экосистем, в которых волны оптимальной для хлорофиллов длины быстро исчезают с глубиной.
  • Защитная функция (антиоксидантная) — обезвреживание агрессивных кислородных соединений (активных форм кислорода) и избытка хлорофилла в возбуждённом состоянии при слишком ярком освещении.

Каротиноиды химически представляют собой 40-углеродную цепь с двумя углеродными кольцами по краям цепи. В строении ксантофиллов, в отличие от каротинов, присутствуют спиртовые, эфирные или альдегидные группы.

Учите биологию вместе с домашней онлайн-школой «Фоксфорда»! По промокоду BIO72020вы получите бесплатный доступ к курсу биологии 7 класса, в котором изучается тема фотосинтеза.

Что происходит в процессе фотосинтеза

Как уже было сказано ранее, в ходе фотосинтеза в хлоропластах под действием солнечного света образуются органические вещества.

Процесс фотосинтеза можно разделить на две фазы:

В ходе световой фазы фотосинтеза образуется энергия в виде АТФ и универсальный донор атома водорода — восстановитель НАДФН (НАДФ·Н2). Эти вещества необходимы для протекания темновой фазы. Также образуется побочный продукт — кислород. Световая фаза может проходить только на мембранах тилакоидов и на свету.

Благодаря сложному биохимическому процессу — циклу Кальвина — в темновую фазу фотосинтеза образуются органические вещества (сахара). Темновая фаза проходит в строме хлоропластов и на свету, и в темноте. Темновые ферментативные процессы протекают медленнее, чем световые, поэтому при очень ярком освещении скорость протекания фотосинтеза будет полностью определяться скоростью темновой фазы. Схемы процессов фотосинтеза представлены на рис.2. Подробное описание процессов смотри далее.

Световая фаза фотосинтеза

Чтобы лучше понять, что происходит во время фотосинтеза, разберём фазы фотосинтеза. Световая фаза фотосинтеза включает в себя фотохимические и фотофизические процессы, и может быть поделена на три этапа:

  1. Фаза поглощения — энергия света улавливается при помощи светособирающих комплексов, переходит в энергию электронного возбуждения пигментов, передаётся в реакционный центр фотосистем I и II.
  2. Фаза реакционных центров — энергия электронного возбуждения пигментов светособирающих комплексов используется для активации реакционных центров фотосистем. В реакционном центре электрон от возбуждённого хлорофилла передаётся другим компонентам электрон-транспортной цепи, пигмент после отдачи электрона переходит в окисленное состояние и становится способным, в свою очередь, отнимать электроны у других веществ. Именно в этом процессе происходит преобразование физической формы энергии в химическую.
  3. Фаза электрон-транспортной цепи — электроны переносятся по цепи переносчиков, образуются АТФ, НАДФН, O2. Необходимо, чтобы каждый переносчик электрон-транспортной цепи поочерёдно восстанавливался и окислялся, обеспечивая таким образом перенос энергии электронов. Любой этап переноса электрона сопровождается высвобождением или поглощением энергии. Часть энергии теряется. На некоторых участках электрон-транспортной цепи перенос электрона сопряжён с переносом протона.
Читайте также:  Каковы функции углеводов в растениях

Для того чтобы понять, что происходит во время фазы фотосинтеза, рассмотрим эти процессы подробнее. Кванты света улавливаются светособирающими комплексами фотосистемы I — молекула хлорофилла в составе светособирающего комплекса переходит в возбуждённое состояние, и энергия передаётся в реакционный центр фотосистемы I. Происходит возбуждение молекул хлорофилла фотосистемы I, отщепляется электрон. Пройдя по цепочке внутренних компонентов фотосистемы I и внешних переносчиков, электрон в конце концов попадает к НАДФ+ — образуется восстановитель НАДФН. Получается, что хлорофилл фотосистемы I отдал электрон и приобрёл положительный заряд, и для дальнейшего функционирования необходимо восстановить нейтральность молекулы, получить электрон, чтобы закрыть «дырку». Этот электрон приходит от фотосистемы II.

На светособирающие комплексы фотосистемы II попадают кванты света — происходит возбуждение молекулы хлорофилла фотосистемы II, молекула хлорофилла отдаёт электрон и переходит в окисленное состояние. Нехватку электрона хлорофилл восполняет благодаря фотолизу воды, при этом образуется протоны H+, а также важный побочный продукт фотосинтеза — кислород. По цепи переносчиков электрон от хлорофилла фотосистемы II попадает к хлорофиллу реакционного центра фотосистемы I и восстанавливает его. Теперь этот хлорофилл может снова поглощать энергию кванта света и отдавать электрон в электрон-транспортную цепь.

Протоны, попадающие во внутритилакоидное пространство, используются для синтеза АТФ. С помощью фермента АТФ-синтазы за счёт градиента протонов образуется АТФ из АДФ и фосфата. Под градиентом понимают неравномерное распределение: во внутритилакоидном пространстве H+ больше, в строме — меньше. Поэтому частицы стремятся проникнуть в строму, переходят в неё через АТФ-синтазу, а в процессе пути сквозь белковый комплекс отдают ему часть энергии, которая и используется для синтеза АТФ.

Темновая фаза фотосинтеза

Что образуется при фотосинтезе в темновую фазу? В строме хлоропластов с помощью энергии АТФ и восстановителя НАДФН, полученных в световую фазу, образуются простые сахара, из которых в ходе других процессов образуется крахмал. Ферментативные процессы не нуждаются в наличии света. Важнейший процесс, происходящий в темновую фазу фотосинтеза, — фиксация углекислого газа воздуха. Синтез и превращения сахаров в хлоропластах имеют циклический характер и носят название цикл Кальвина.

В нём можно выделить три этапа:

  1. Фаза карбоксилирования (введение CO2 в цикл).
  2. Фаза восстановления (используются АТФ и НАДФН, полученные в световую фазу).
  3. Фаза регенерации (превращения сахаров).

В строме хлоропластов находится производное простого пятиуглеродного сахара рибозы. С помощью особого фермента (Рубиско) к производному рибозы присоединяется CO2 (реакция карбоксилирования) — образуется неустойчивое шестиуглеродное соединение, которое быстро распадается на две трехуглеродные молекулы. Дальше, с затратой АТФ и НАДФН, полученных в ходе световых процессов, трехуглеродное соединение модифицируется — образуется восстановленное соединение с атомом фосфора и альдегидной группой в составе. Теперь перед клеткой стоит проблема: необходимо получить шестиуглеродное соединение — глюкозу для синтеза крахмала, а также пятиуглеродное — производное рибозы для того, чтобы эти процессы могли начаться заново. Для решения этих проблем в фазу регенерации из полученных ранее трехуглеродных соединений под действием ферментов образуются четырёх-, пяти-, шести- и семиуглеродные сахара. Из шестиуглеродной молекулы образуется глюкоза, из которой синтезируется крахмал. Из пятиуглеродной молекулы образуется производное рибозы и цикл замыкается. Остальные сахара также используются клеткой в других биохимических процессах.

Отдельно стоит сказать про крайне важный фермент первой фазы цикла Кальвина — рибулозо-1,5-дифосфаткарбоксилазу (Рубиско). Это сложный фермент, состоящий из 16 субъединиц, с молекулярной массой в 8 раз больше, чем у гемоглобина. Является одним из важнейших ферментов в природе, поскольку играет центральную роль в основном механизме поступления неорганического углерода (из CO2) в биологический круговорот. Содержание Рубиско в листьях растений очень велико, он считается самым распространённым ферментом на Земле.

Значение фотосинтеза

В процессе фотосинтеза энергия света заключается в энергию химических связей органических веществ. Поэтому фотосинтез служит первичным источником почти всей энергии, используемой живыми организмами в процессе жизнедеятельности. Практически все живые организмы, за исключением хемосинтетиков, так или иначе пользуются теми продуктами, что выделяются при фотосинтезе.

За счёт фотосинтеза сформировалась и поддерживается пригодная для дыхания атмосфера с высоким содержанием кислорода.

Фиксация углекислого газа в ходе фотосинтеза служит главным местом входа неорганического углерода в биогеохимический цикл. Также ассимиляция CO2 препятствует перегреву Земли, предотвращая парниковый эффект.

Заключение

Каждый год на нашей планете благодаря фотосинтезу производится около 200 миллиардов тонн кислорода, из которого образуется озоновый слой, защищающий от ультрафиолетовой радиации. Фотосинтез помогает поддерживать состав атмосферы и препятствует увеличению количества углекислого газа. Без растений и кислорода, который они выделяют в процессе фотосинтеза, жизнь на нашей планете была бы просто невозможна.

Источник