Меню

Экологическое влияние температуры на жизнь растений и животных

Влияние температуры на организмы

Влияние температуры на организмы

Температура — важнейший из ограничивающих (лимити­рующих) факторов. Пределами толерантности для любого ви­да являются максимальная и минимальная летальные температуры, за пределами которых вид смертельно поражают жара или холод (рис. 2.3). Если не принимать во внимание некоторые уникальные исключения, все живые существа спо­собны жить при температуре между 0 и 50 °С, что обусловлено свойствами протоплазмы клеток.

На рис. 2.3 показаны температурные пределы жизни видо­вой группы, популяции. В «оптимальном интервале» организ­мы чувствуют себя комфортно, активно размножаются и чис­ленность популяции растет. К граничным участкам темпера­турного предела жизни — «пониженной жизнедеятельности» — организмы чувствуют себя угнетенно. При дальнейшем похо­лодании в пределах «нижней границы стойкости» или увеличе­нии жары в пределах «верхней границы стойкости» организмы попадают в «зону смерти» и погибают.

Этим примером иллюстрируется общий закон биологи­ческой стойкости (по Ламотту), применимый к любому из важных лимитирующих факторов. Величина «оптимального ин­тервала» характеризует «величину» стойкости организмов, т. е. величину их толерантности к этому фактору, или «экологиче­скую валентность».

Адаптационные процессы у животных по отношению к температуре привели к появлению пойкилотермных и гомой-отермных животных. Подавляющее большинство животных являются пойкилотермными, т. е. температура их собствен­ного тела меняется с изменением температуры окружающей среды: земноводные, пресмыкающиеся, насекомые и др. Зна­чительно меньшая часть животных — гомойотермные, т. е. имеют постоянную температуру тела, независимую от температуры внешней среды: млекопитающие (в том числе и чело­век), имеющие температуру тела 36—37 °С, и птицы с темпе­ратурой тела 40 °С.

Активную жизнь при температуре ниже нуля могут вести только гомойотермные животные. Пойкилотермные хотя вы­держивают температуру значительно ниже нуля, но при этом теряют подвижность. Температура порядка 40 °С, т. е. даже ниже температуры свертывания белка, для большинства жи­вотных предельна.

Не меньшее значение температура играет в жизни расте­ний. При повышении температуры на 10 ° С интенсивность фо­тосинтеза увеличивается в два раза, но лишь до 30—35 °С, за­тем его интенсивность падает, и при 40—45 °С фотосинтез во­обще прекращается. При 50 °С большинство наземных расте­ний погибает, что связано с интенсификацией дыхания расте­ний при повышении температуры, а затем его прекращения при 50 °С.

Температура влияет и на ход корневого питания у расте­ний: этот процесс возможен лишь при условии, когда темпера­тура почвы на всасывающих участках на несколько градусов ниже температуры наземной части растения. Нарушение этого равновесия влечет за собой угнетение жизнедеятельности рас­тения и даже его гибель.

Известны морфологические приспособления растений к низким температурам, так называемые жизненные формы рас­тений, которые, например, можно выделить по положению почек возобновления растительных видов по отношению к по­верхности почвы и к защите, которую они получают от снеж­ного покрова, лесной подстилки, слоя почвы и т. п. Вот неко­торые из форм (по Раункеру): эпифиты — растут на других рас­тениях и не имеют корней в почве; фанерофиты (деревья, кус­тарники, лианы) — их почки остаются над поверхностью снега и нуждаются в защите покровными чешуйками; криптофиты, или геофиты, теряют всю видимую растительную массу и пря­чут свои почки в клубнях, луковицах или корневищах, скры­тых в почве; терофиты — однолетние растения, отмирающие с наступлением неблагоприятного сезона, выживают лишь их семена или споры.

Морфологические адаптации к климатическим условиям жизни, и прежде всего к температурным, наблюдаются также у животных. Жизненные формы животных одного вида, на­пример, могут сформироваться под воздействием низких тем­ператур, от -20 до -40 °С, при которых они вынуждены накап­ливать питательные вещества и увеличивать массу тела: из всех тигров самый крупный амурский тигр, живущий в наиболее северных и суровых условиях. Эта закономерность именуется правилом Бергмана: у теплокровных животных размер тела осо­бей в среднем больше у популяций, живущих в более холод­ных частях ареала распространения вида.

Но в жизни животных гораздо большее значение имеют физиологические адаптации, простейшей из которых явля­ется акклиматизация — физиологическое приспособление к пе­ренесению жары или холода. Например, борьба с перегревом путем увеличения испарения, борьба с охлаждением у пойки-лотермных животных путем частичного обезвоживания своего тела или накопления специальных веществ, понижающих точ­ку замерзания, у гомойотермных — за счет изменения обмена веществ.

Существуют и более радикальные формы защиты от холо­да — миграция в более теплые края (перелеты птиц; высоко­горные серны на зиму переходят на более низкие высоты, и др.), зимовка — впадение в спячку на зимний период (сурок, белка, бурый медведь, летучие мыши: они способны понижать температуру своего тела почти до нуля, замедляя метаболизм и, тем самым, трату питательных веществ).

Читайте также:  Урок на тему дыхание растений 6 класс конспект

Большинство животных зимой находится в неактивном со­стоянии, а насекомые — вообще в неподвижном, остановив­шись в своем развитии. Это явление называют диапаузой, и она может наступать на разных стадиях развития насекомых — яйца, личинки, куколки и даже на стадии взрослой особи (ба­бочки, например).

Но многие организмы умеренных широт в этот период ве­дут активный образ жизни (волки, олени, зайцы и др.), а неко­торые даже размножаются (королевские пингвины и др.).

Таким образом, температура, являясь важнейшим лими­тирующим фактором, оказывает весьма существенное влияние на адаптационные процессы в организмах и популяциях наземновоздушной среды.

Источник

Температура; влияние температурного режима на растения и животных

Температурные пределы жизни. Необходимость тепла для существования организмов обусловлена прежде всего тем, что все процессы жизнедеятельности возможны лишь на определенном тепловом фоне, определяемом количеством тепла и продолжительностью его действия. От тем пературы окружающей среды зависит температура организмов и, как следствие, скорость и характер протекания всех химических реакций, составляющих обмен веществ.

Границами существования жизни являются температурные условия, при которых, не происходит денатурации, белков, необратимого изменения коллоидных свойств цитоплазмы, нарушения активности ферментов, дыхания. Для большинства организмов этот диапазон температур составляет от 0 до +50°С. Однако ряд организмов обладает специализированными ферментными системами и приспособлен к активному существованию при температурах, выходящих за указанные пределы.

Виды, оптимальные условия жизнедеятельности которых приурочены к области высоких значений температур, относят к экологической группе термофилов. Термофильность характерна для многих бактерий, вызывающих самонагревание влажного зерна, сена, цианобактерии осцилатории, населяющей термальные источники Камчатки с температурой воды 85—93°С. Успешно переносят высокие температуры (65—80°С) несколько видов зеленых водорослей, накипные лишайники, семена пустынных растений, находящиеся в верхнем раскаленном слое почвы. Температурный предел представителей животного мира обычно не превышает +55—58°С (раковинные амебы, нематоды, клещи, некоторые ракообразные, личинки многих двукрылых).

У многих видов растений и животных клетки сохраняют активность при температуре от 0 до -8°С. Такие организмы относятся к экологической группе криофилов (грен. Kryos —холод, лед). Кри-офилия характерна для многих бактерий, грибов, лишайников, членистоногих и других существ, обитающих в тундрах, арктических и антарктических пустынях, в высокогорьях, холодных полярных водах и т. п.

Пойкилотермные и гомойотермные организмы. Представители большинства видов живых организмов не обладают способностью активной терморегуляции своего тела. Их активность зависит прежде всего от тепла, поступающего извне, а температура тела — от величины температуры окружающей среды. Такие организмы называют пойкилотермными (эктотермпыми). Пойкило-термия свойственна всем микроорганизмам, растениям, беспозвоночным и большей части хордовых.

Только у птиц и млекопитающих тепло, вырабатываемое в процессе интенсивного обмена веществ, служит достаточно надежным источником повышения температуры тела и поддержания ее на постоянном уровне независимо от температуры окружающей среды. Этому способствует хорошая тепловая изоляция, создаваемая шерстным покровом, плотным оперением, толстым слоем подкожной жировой ткани. Такие организмы называют гомойотермными (эндотермными, или теплокровными). Свойство эндотермности позволяет многим видам животных (белым медведям, ластоногим, пингвинам и др.) вести активный образ жизни при низких температурах.

Частный случай гомоЙотермии — гетеротермия — свойственна животным, впадающим в неблагоприятный период года в спячку или временное оцепенение (суслики, ежи, летучие мыши, сони и др.). В активном состоянии они поддерживают высокую температуру тела, а в случае низкой активности организма — пониженную, что сопровождается замедлением процессов обмена веществ и, как следствие, низкой теплоотдачей.

Температурная адаптация растений. Дня большинства наземных растений оптимальной является температура +25—30°С, а для таких требовательных к теплу растений, как кукуруза, фасоль, соя и другие виды тропического и субтропического происхождения, — +30—35°С. Следует иметь в виду, что для каждой фазы и стадии развития растений существует как оптимальный, так и верхний и нижний пределы температурного режима.

При воздействии на растение высоких температур происходит сильное обезвоживание и иссушение, ожоги, разрушение хлорофилла, необратимые расстройства дыхания, наконец, тепловая денатурация белков, коагуляция цитоплазмы и гибель.

Противостоять опасному влиянию экстремально высоких температур растения способны благодаря усиленной транспирации, накапливанию в цитоплазме защитных веществ (слизи, органических кислот и др.), сдвигам температурного оптимума активности важнейших ферментов, переходу в состояние глубокого покоя, а также занятию ими временных местообитаний, защищенных от сильного перегрева. Это означает, что у некоторых растений вся вегетация сдвигается на сезон с более благоприятными тепловыми условиями. Так, в пустынях и степях есть немало видов растений, начинающих вегетацию очень рано весной и успевающих ее закончить до наступления летней жары. Они переживают эти условия в состоянии летнего покоя — уже созрели семена или появились подземные органы —луковицы, клубни, корневища (тюльпаны, крокусы, мятлик луковичный и др.)

Читайте также:  Птицы и растения в октябре

Морфологические адаптации, предотвращающие перегрев, практически те же самые, что служат растению для ослабления потока солнечной радиации. Это блестящая поверхность и густое опушение, придающие листьям светлую окраску и повышающие отражение солнечного излучения, вертикальное положение листьев, свертывание листовых пластинок (у злаков), уменьшение листовой поверхности и т. д. Эти же особенности строения растений одновременно обеспечивают им возможность уменьшения потерь воды. Таким образом, комплексное действие экологических факторов на организм находит отражение в комплексном характере адаптации.

Опасность низких температур для растений сводится к тому, что в межклетниках и клетках замерзает вода и, как следствие, происходит обезвоживание и механическое повреждение клеток, а затем коагуляция белков и разрушение цитоплазмы. Холод тормозит процессы роста растений, фотосинтеза, образования хлорофилла, снижает энергетическую эффективность дыхания, резко замедляет скорость развития.

Для перенесения неблагоприятных условий холодного периода года растения готовятся заранее: у них опадают листья, а у травянистых форм — надземные органы, происходит опушение почечных чешуи, зимнее засмоление почек (у хвойных), образование толстой кутикулы, утолщенного пробкового слоя и т. д.

Среди морфологических адаптации растений к жизни в холодных широтах важное значение имеют небольшие размеры (карликовость) и особые формы роста. Высота карликовых растений (карликовая береза, карликовые ивы и др.) обычно соответствует глубине снежного покрова, под которым зимуют растения, так как все части, выступающие над снегом, гибнут от замерзания. Подобная защита от холода характерна и для стелющихся форм — стлаников (кедрового стланика, можжевельника, рябины и др.) и подушковидных форм, образуемых в результате усиленного ветвления и крайне замедленного роста побегов.

Примером физиологической адаптации растений, препятствующей замерзанию воды в межклетниках и клетках, их обезвоживанию и механическому повреждению, служит повышение концентрации растворимых углеводов в клеточном соке, что способствует понижению точки замерзания.

Температурная адаптация животных. По сравнению с растениями животные обладают более разнообразными возможностями адаптации к воздействию различных температур. Обычно выделяют три основных пути температурных адаптации: 1) химическая терморегуляция (усиленное образование тепла в ответ на понижение температуры среды); 2) физическая терморегуляция (изменение уровня теплоотдачи, способность удерживать тепло или, наоборот, рассеивать его избыток); 3) поведенческая терморегуляция (избегание неблагоприятных температур путем перемещений в пространстве или изменение поведения более сложным образом).

Пойкилотермные животные, в отличие от гомойотермных, характеризуются более низким уровнем обмена веществ даже при одинаковой температуре тела. Например, пустынная игуана при температуре +37°С потребляет кислорода в 7 раз меньше, чем грызуны такой же массы. По этой причине в теле иойкилотермных животных вырабатывается мало тепла, и, как следствие, возможности химической и физической терморегуляции ничтожны. Основным способом регуляции температуры тела у них являются особенности поведения — перемена позы, активный поиск благоприятных климатических условий, смена мест обитания, самостоятельное создание нужного микроклимата (сооружение гнезд, рытье нор и т. п.). Например, в сильную жару животные прячутся в тень, скрываются в норах, а некоторые виды пустынных ящериц и змей взбираются на кусты, избегая соприкосновения с раскаленной поверхностью почвы.

Некоторые пойкилотермные животные способны поддерживать оптимальную температуру тела за счет работы мышц. Так, шмели разогревают тело путем активизации мышечных сокращений (дрожью) до +32 и 33°С, что дает им возможность взлетать и кормиться в прохладную погоду.

Гомойотермия развилась из пойкилотермии путем интенсификации обменных процессов и усовершенствования способов регуляции теплообмена животных с окружающей средой. Эффективная регуляция поступления и отдачи тепла позволяет взрослым гомойотермным животным поддерживать постоянную оптимальную температуру тела во все времена года.

Благодаря высокой интенсивности обмена веществ и выработке значительного количества тепла гомойотермные животные отличаются высокой способностью к химической терморегуляции, что особенно важно при действии холода. Однако поддержание температуры за счет возрастания теплопродукции требует большого расхода энергии, поэтому животные в холодный период года нуждаются в большом количестве пищи или тратят много жировых запасов, накопленных ранее. Например, птицам, остающимся зимовать, страшны не столько морозы, сколько бескормица. В случае хорошего урожая семян ели и сосны клесты зимой даже выводят птенцов. Но при недостатке корма в зимний период такой тип терморегуляции экологически невыгоден, поэтому слабо развит у песцов, моржей, тюленей, белых медведей и других животных, обитающих за полярным кругом.

Физическая терморегуляция, обеспечивающая адаптацию к холоду не за счет дополнительной выработки тепла, а за счет сохранения его в теле животного, осуществляется путем рефлекторного сужения и расширения кровеносных сосудов кожи, меняющих ее теплопроводность, изменения теплоизолирующих свойств меха и перьевого покрова, регуляции испарительной теплоотдачи.

Густой мех млекопитающих, перьевой покров птиц позволяют сохранять вокруг тела прослойку воздуха с температурой, близкой к температуре тела животного, и тем самым уменьшать теплоотдачу во внешнюю среду. У обитателей холодного климата хорошо развит слой подкожной жировой клетчатки, который равномерно распределен по всему телу и является хорошим теплоизолятором.

Читайте также:  Изучение изменчивости растений построение вариационного ряда и кривой вывод

Эффективным механизмом регуляции теплообмена служит также испарение воды путем потоотделения или через влажные оболочки полости рта (например, у собак). Так, человек при сильной жаре может выделять более 10 л пота в день, способствуя тем самым охлаждению тела.

Поведенческие способы регуляции теплообмена у гомойотермных животных такие же, как и у пойкилотермных.

Таким образом, сочетание эффективных способов химической, физической и поведенческой терморегуляции позволяет теплокровным животным поддерживать свой тепловой баланс на фоне широких колебаний температуры среды.

БИОТИЧЕСКИЕ ФАКТОРЫ

В отличие от абиотических факторов, охватывающих всевозможные действия неживой природы, биотические факторы — это совокупность влияний жизнедеятельности одних организмов на другие.

Гомотипические реакции, или взаимодействия между особями одного и того же вида. Реакции этого типа весьма разнообразны. Основные из них — групповой и массовый эффекты, внутривидовая конкуренция.
Гетеротипические реакции, т.е. взаимоотношения между особями разных видов. Влияние, которое оказывают друг на друга два вида, живущих вместе, может быть нулевым, благоприятным или неблагоприятным. Отсюда типы комбинаций могут быть следующими.
Нейтрализм—оба вида независимы и не оказывают друг на друга никакого влияния.
Конкуренция—каждый из видов оказывает на другой неблагоприятное действие. Виды конкурируют в поисках пищи, укрытий, мест кладки яиц-и т. п. Оба вида называют конкурирующими.
Мутуализм—симбиотические взаимоотношения, когда оба сожительствующих вида извлекают взаимную пользу.
Сотрудничество—оба вида образуют сообщество. Оно не является обязательным, так как каждый вид может существовать отдельно, изолированно, но жизнь в сообществе им обоим приносит пользу.
Комменсализм—взаимоотношения видов, при которых один из партнеров получает пользу, не нанося ущерб другому.
Аменсализм—тип межвидовых взаимоотношений, при котором в совместной среде один вид подавляет существование другого вида, не испытывая противодействия.
Паразитизм—это форма взаимоотношений между видами, при которой организмы одного вида (паразита, потребителя) живут за счет питательных веществ или тканей организма другого вида (хозяина) в течение определенного времени.
Хищничество—такой тип взаимоотношений, при котором представители одного вида поедают (уничтожают) представителей другого, т. е. организмы одного вида служат пищей для другого.

АНТРОПОГЕННЫЕ ФАКТОРЫ, результат воздействия человека на окружающую среду в процессе хозяйственной и другой деятельности. Антропогенные факторы можно разделить на 3 группы: оказывающие прямое воздействие на окружающую среду в результате внезапно начинающейся, интенсивной и непродолжительной деятельности, напр. прокладка автомобильной или железной дороги через тайгу, сезонная промысловая охота в определённом районе и т. д.; косвенное воздействие – через хозяйственную деятельность долговременного характера и малой интенсивности, напр. загрязнение окружающей среды газообразными и жидкими выбросами завода, построенного у проложенной железной дороги без необходимых очистных сооружений, приводящее к постепенному усыханию деревьев и медленному отравлению тяжёлыми металлами животных, населяющих окрестную тайгу; комплексное воздействие вышеперечисленных факторов, приводящее к медленному, но существенному изменению окружающей среды (рост населения, увеличение численности домашних животных и животных, сопровождающих человеческие поселения – ворон, крыс, мышей и т. д., преобразование земельных угодий, появление примесей в воде и т. п.). В результате в изменённом ландшафте остаются лишь растения и животные, сумевшие приспособиться к новому состоянию жизни. Напр., хвойные деревья заменяются в тайге мелколиственными породами; место крупных копытных и хищников занимают таёжные грызуны и охотящиеся на них мелкие куньии т. п.

Экологическая валентность,степень приспособляемости живого организма к изменениям условий среды. Экологическая валентностьпредставляет собой видовое свойство. Количественно она выражается диапазоном изменений среды, в пределах которого данный вид сохраняет нормальную жизнедеятельность. Экологическая валентностьможет рассматриваться как в отношении реакции вида на отдельные факторы среды, так и в отношении комплекса факторов. В первом случае виды, переносящие широкие изменения силы воздействующего фактора, обозначаются термином, состоящим из названия данного фактора с приставкой «эври» (эвритермные — по отношению к влиянию температуры, эвригалинные — к солёности, эврибатные — к глубине и т.п.); виды, приспособленные лишь к небольшим изменениям данного фактора, обозначаются аналогичным термином с приставкой «стено» (стенотермные, стеногалинные и т.п.). Виды, обладающие широкой Экологическая валентностьпо отношению к комплексу факторов, называются эврибионтамив противоположность стенобионтам, обладающим малой приспособляемостью. Поскольку эврибионтность даёт возможность заселения разнообразных мест обитания, а стенобионтность резко суживает круг пригодных для вида стаций, эти две группы часто называют соответственно эври- или стенотопными.

Источник