Меню

Экотоксиканты в системе почва растения

Защити свою планету!

Меню сайта

Токсиканты в почве: источники образования, действие на живые и растительные организмы

Материалы » Шпаргалки по экологической токсикологии » Токсиканты в почве: источники образования, действие на живые и растительные организмы

– особое природное образование, обладающие рядом свойств, присущих живой и неживой природе, сформировавшееся в результате длительного преобразования поверхностных слоев литосферы под совместным взаимообусловленным взаимодействием гидросферы, атмосферы, живых и мертвых организмов. При уплотнении почвы

ухудшается газообмен. Также на почву влияет характер растений (т.е. какая культура произростает).

Главными источниками загрязнения являются:

1) Жилые дома и бытовые предприятия

. В числе загрязняющих веществ преобладает бытовой мусор, пищевые отходы, фекалии, строительный мусор, отходы отопительных систем, пришедшие в негодность предметы домашнего обихода; мусор общественный учреждений – больниц, столовых, гостиниц, магазинов и др. Вместе с фекалиями в почву нередко попадают болезнетворные бактерии, яйца гельминтов и другие вредные организмы, которые через продукты питания попадают в организм человека.

2) Промышленные предприятия

. В твердых и жидких промышленных отходах постоянно присутствуют те или иные вещества, способные оказывать токсическое воздействие на живые организмы и их сообщества. Например, в отходах металлургической промышленности обычно присутствуют соли цветных и тяжелых металлов. Машиностроительная промышленность выводит в окружающую среду цианиды, соединения мышьяка, бериллия. При производстве пластмасс и искусственных локон образуются отходы бензола и фенола. Отходами целлюлозно-бумажной промышленности, как правило, являются фенолы, метанол, скипидар, кубовые остатки.

. Помимо образования массы шлаков при сжигании каменного угля с теплоэнергетикой связано выделение в атмосферу сажи, несгоревших частиц, оксидов серы, в конце концов оказывающихся в почве.

4) Сельское хозяйство

. Удобрения, ядохимикаты, применяемые в сельском и лесном хозяйстве для защиты растений от вредителей, болезней и сорняков. Загрязнение почв и нарушение нормального круговорота веществ происходит в результате недозированного применения минеральных удобрений и пестицидов. Пестициды, с одной стороны, спасают урожай, защищают сады, поля, леса от вредителей и болезней, уничтожают сорную растительность, освобождают человека от кровососущих насекомых и переносчиков опаснейших болезней (малярия, клещевой энцефалит и др.), с другой стороны – разрушают естественные экосистемы, являются причиной гибели многих полезных организмов, отрицательно влияют на здоровье людей. Пестициды обладают рядом свойств, усиливающих их отрицательное влияние на окружающую среду. Технология применения определяет прямое попадание на объекты окружающей среды, где они передаются по цепям питания, долгое время циркулируют по внешней среде, попадай из почвы в воду, из воды в планктон, затем в организм рыбы и человека или из воздуха и почвы в растения, организм травоядных животных и человека.

. При работе двигателей внутреннего сгорания интенсивно выделяются оксиды азота, свинец, углеводороды и другие вещества, оседающие на поверхности почвы или поглощаемые растениями. Каждый автомобиль выбрасывает в атмосферу в среднем в год 1 кг свинца в виде аэрозоля. Свинец выбрасывается в выхлопными газами автомобилей, осаждается на растениях, проникает в почву, где он может оставаться довольно долго, поскольку слабо растворяется. Наблюдается ярко выраженная тенденция к росту количества свинца в тканях растений. Это явление можно сопоставить со все увеличивающимся потреблением горючего, содержащего тетра-этил свинца. Люди, живущие в городе около магистралей с интенсивным движением, подвергаются риску аккумулировать в своем организме всего за несколько лет такое количество свинца, которое намного превышает допустимые пределы. Свинец включается в различные клеточные ферменты, и в результате эти ферменты уже не могут выполнять предназначенные им в организме функции. В начале отравления отмечают повышенную активность и бессонницу, позднее утомляемость, депрессии. Более поздними симптомами отравления являются расстройства функции нервной системы и поражение головного мозга. Автотранспорт в Москве выбрасывает ежегодно 130 кг загрязняющих веществ на человека. Почву загрязняют нефтепродуктами при заправке машин на полях и в лесах, на лесосеках и т.д.

Источник

Методы диагностики экотоксикантов в почвах, растениях, продукции растениеводства и животноводства

МЕТОДЫ ДИАГНОСТИКИ ЭКОТОКСИКАНТОВ В ПОЧВАХ, РАСТЕНИЯХ, ПРОДУКЦИИ РАСТЕНИЕВОДСТВА И ЖИВОТНОВОДСТВА

Загрязнение почв выявлено на территориях, подвер­женных воздействию прежде всего выбросов предприятий цветной и черной металлургии, энергетики, машиностроения и металлообработки, химической, нефтехимической промыш­ленности, производства стройматериалов. Например, за более чем 20-летний период ведения мониторинга в 5-километро­вых зонах вокруг городов Приморья выявлено увеличение примерно в 1,5 — 2 раза общего содержания свинца в почвах даже на расстоянии 200 — 500 м от автомобильных дорог. За период 1999 — 2003 годов в почвах вблизи промышленных центров значимо повысилось содержание тяжелых металлов, нефтепродуктов, фтора, сульфатов и нитратов.

Источниками загрязнения окружающей среды соеди­нениями металлов являются предприятия черной и цветной металлургии, фтора — алюминиевые заводы, предприятия по производству фосфорных удобрений и другие. За пери­од 1999 — 2003 годов загрязнение почв водорастворимыми соединениями фтора, в количествах, превышающих ПДК, зафиксировано в городах Зима, Иркутск, Краснотурьинск, Каменск-Уральский, Михайловск, Новокузнецк, Перво­уральск, Свирск, Черемхово, Шелехов.

Высокие уровни загрязнения почв нефтепродуктами, превышающие фоновые в 10—100 раз и более, наблюда­ются в районах добычи, транспортировки, распределения и переработки нефти. Почти во всех обследованных про­мышленных центрах имеются участки почв, загрязненные нефтепродуктами. Загрязнены нефтепродуктами почвы Сызранского района Самарской области, Сормовского района Нижнего Новгорода, Дзержинска. Загрязнение почв остаточными количествами пестицидов, выявлено на площади на 3,3 — 3,5 % сельскохозяйственных земель.

При выборе мест отбора проб почвы и их первичной оценки обычно учитывают два главных параметра:

1) размер (площадь) элементарного участка, с которого отбирают смешанный почвенный образец, отражающий средний уровень загрязнения почвы,

2) ключевой участок, являющийся наименьшей геоморфологической единицей ландшафта, в достаточной мере отражающей генезис (тип, подтип) свойств почв.

В пределах ключевого участка выделяют элементарные участки, размеры которых зависят от расстояния до источника загрязнения почвы Обычно руководствуются правилом: чем дальше от источника, тем больше должна быть площадь элементарного участка. Кроме того, в пределах определенного элементарного участка выбирают также рабочую площадку, именно с которой и отбирают пробы почв для составления смешанного почвенного образца. Если размер элементарного участка сравнительно велик, а почвенный покров сложен, то в пределах участка выделяют несколько пробных рабочих площадок (обычно 2-3).

Читайте также:  Растения значение для людей примеры

За рациональный размер рабочей площадки обычно принимают площадь около 1 га (100 х 100 м). Вокруг предприятия площадки намечают следующим образом: в радиусе 1,5 – 2,5 км (зона наибольшей загрязненности) по 8 направлениям – румбам (хотя и не обязательно строго по азимуту), в радиусе 2,5 – 5 км (зона значительного влияния) – по 10 – 12 румбам, в радиусе 5 – 10 км (зона обычно фиксируемого влияния объекта) по 16 – 24 румбам. В таком случае пробные площадки оказываются друг от друга на равномерном расстоянии 1,5 – 2 км.

Представленная схема носит рекомендательный характер, поскольку в природных условиях положение элементарных участков и количество пробных площадок зависит от ландшафтно – геохимических особенностей территории. При сильном загрязнении вокруг мощных предприятий в направлении господствующих ветров территорию обследуют на расстоянии до 20 – 30 км, а в направлении наименьшей повторяемости и силы ветров – примерно в 2 раза меньше.

Выбор места для отбора проб биоты является специфической задачей биомониторинга. Данная процедура имеет принципиальную особенность – индикационный характер поиска места для такого пробоотбора. Он заключается в том, что наблюдения за показаниями состояния растительности и животного мира должно показывать исследователю, где ему отбирать пробы биообъектов для последующего анализа на предмет их загрязненности.

В операцию поиска источника или места пробоотбора часто также включается задача идентификации характера воздействия или загрязняющего вещества (установление его природы, расшифровка состава основных компонентов смеси). При отсутствии технической возможности или необходимости в идентификации она должна заменяться более простой задачей обнаружения, т. е. подтверждения факта наличия загрязняющего вещества в среде. В случае обнаружения вредного физического фактора целесообразно сразу проводить количественное измерение его уровня.

Эти задачи должны решаться максимально экспрессно (т. е. за минимальный промежуток времени), сопоставимо по времени с пробоотбором

Применяемые методы и технические средства должны быть способны обнаруживать максимально специфично (т. е. избирательно по отношению к искомому ЗВ или ФФ на фоне мешающих примесей или других имеющихся факторов). В случае идентификации требование о специфичности средства заменяется требованием, чтобы техническое средство было селективно, т. е. способно одновременно (или последовательно) различать в анализируемой среде несколько даже похожих по свойствам веществ (факторов

Отбор проб почвы

Точечные пробы отбирают методом конверта по диагонали или другим способом, следя за тем, чтобы каждая проба представляла собой часть почвы, типичной для исследуемых почвенных горизонтов и ключевых участков.

Метод конверта является наиболее распространенным способом отбора смешанных почвенных образцов и чаше всего применяются для исследования почвы гумусового горизонта. При этом из точек контролируемого элементарного участка (или каждой рабочей пробоотборной площадки) берут 5 образцов почвы. Точки должны быть расположены так, чтобы мысленно соединенные прямыми линиями, давали рисунок запечатанного конверта (длина стороны квадрата может составлять от 2 до 5 – 10 м). Обычно при изучении почвы отбирают пробы гумусового горизонта с глубины около 20 см., что соответствует штыку лопаты. Из каждой точки отбирают около 1 кг (по объему около 0,5 л), но не менее 0,5 кг почвы. Почвенные образцы упаковывают в полиэтиленовые или полотняные мешочки и прилагают к ним этикетки (сопроводительные талоны).

Объединенную пробу почвы готовят из точечных проб. При определении в почве поверхностно – распределяющихся веществ (ПАУ, тяжелые металлы, радионуклиды и др.) точечные пробы обычно отбирают с помощью трубчатого пробоотборника послойно на глубине 0,5 и 20 см массой до 0,2 кг. При оценке загрязнения почвы летучими соединениями или веществами с высокой способностью к вертикальной миграции (нитрозоамины) пробы отбирают по всей глубине почвенного профиля в герметично закрывающиеся емкости. При невозможности быстрого анализа на месте пробы хранят в условиях, как правило, описанных в методиках анализа.

Определенные трудности возникают при отборе почвы для радиологических исследований, что связано с перераспределением радионуклидов в ландшафтах после поступления из атмосферы. Для снижения влияния рельефа, вида почв и растительности, а также возможности сравнения данных, отбор образцов должен производиться таким образом, чтобы их радиоактивность характеризовала как можно большую территорию, а места отбора были ограничены участками с горизонтальной поверхностью и минимальным стоком. Кроме того, образцы радиоактивных проб должны отбираться с открытых целинных участков в ненарушенной структурой. На обследуемом участке желательно выполнить предварительную гамма – радиометрическую съемку.

Измерения рекомендуется производить на высоте 1 м от поверхности и не ближе 2 – 5 м от стен строений. Одновременно с радиоактивными образцами почвы отбирают и пробы растительности. При изучении миграции радионуклидов в наземных экосистемах каждого ландшафта выбирают наиболее характерные участки на протяжении всего профиля от водораздела к пониженным элементам рельефа. Для отбора образцов закладывают разрезы размером 70х150 см и глубиной 1 – 2 м (в зависимости от типа почв) и отбирают пробы по горизонтали непрерывно по всему разрезу. Толщина отбираемых для радиометрических анализов слоев обычно не превышает 2 – 5 см.

Специфической процедурой является отбор проб с твердых, гладких и не сорбирующих поверхностей (глина, стекло, кафель, пластмасса, металл, лакокрасочные покрытия и др.). Для этой цели применяют ватно – марлевые или ватные тампоны, смоченные водой или органическим растворителем. Иногда берут мазки или смывы со стен, полов, окон производственных помещений (с площади примерно 0,5 м2), а с поверхности зданий соскабливают внешний слой покрытия толщиной 1 – 2 мм с площади 0,1 – 0,25 м2.

Отбор проб донных отложений

Донные отложения отбирают для определения характера, степени и глубины проникновения в них ЗВ, изучения закономерностей процессов самоочищения, выявления источников вторичного загрязнения и учета воздействия антропогенного фактора на водные экосистемы.

Проба при этом должна характеризовать не столько донные грунты, сколько водный объект или часть за определенный промежуток времени. В водоемах и водотоках точки отбора проб выбирают с учетом распределения донных отложений и их перемещения. Отбор таких проб обязателен в местах максимального накопления донных отложений (места сброса сточных вод и впадения боковых потоков, приплотинные участки водохранилищ), а также в местах, где обмен загрязняющими веществами между водой и донными отложениями наиболее интенсивен (судоходные фарватеры рек, перекаты, участки ветровых волнений). При оценке влияния сточных вод на степень загрязненности донных отложений и динамики накопления ЗВ в них пробы отбирают выше и ниже места сброса в характерные фазы гидрологических режимов изучаемых водных объектов.

Читайте также:  Творческая работа по биологии про растения

Способ отбора проб донных отложений выбирают в зависимости от свойств определяемых веществ и поставленной задачи. Для оценки сезонного поступления ЗВ и их поверхностного распределения в донных отложениях проб отбирают из верхнего слоя, а при исследовании распределения ЗВ по годам донные отложения отбирают послойно. При этом пробы, отобранные на различных горизонтах, помещают в разную посуду. Отобранные пробы хранят в охлажденном состоянии (от 0 до –3оС) или в замороженном состоянии (до –20оС).

Отбор проб растительности

При отборе проб растительности обычно предполагается, что большинство ЗВ оседают на поверхности растительного образца и находятся там в подвижной форме. Частички пыли или почвы, содержащие ЗВ, прилипают прежде всего к листьям, стеблям и плодам, покрытым воскообразным веществом. Рекомендуется отбирать растения, не подвергавшиеся химической обработке. При этом целые растения или их части следует собирать в поле, где они находятся в естественном окружении. Для веществ, которые попадают в растения из почвы (хлорорганические соединения, тяжелые металлы, радионуклиды), необходимо учитывать тот факт, что определяемые соединения могут прочно связываться с внутренними тканями растения. Для их выделения из матриц следует применять специальные методы.

Отбор травы с пастбищ или сенокосных угодий производят непосредственно перед выпасом животных или скашиванием ее на корм. Для этого выделяют 8 – 10 участков площадью 1 – 2 м2, расположенных по диагонали. С каждого участка берут по 400 – 550 г и готовят объединенную пробу массой 1 – 1,5 кг. При отборе образцов мелких растений следует брать в лабораторию все растение полностью. Пробы корнеплодов и фруктов берут из одной партии. Из точечных проб составляют объединенную пробу массой 1 – 1,5 кг. Пробы зерна отбирают в 4 – 8 точках из различных из различных мешков. Объединенная проба должна быть не менее 2 кг и хорошо перемешана.

Отбор проб животного происхождения

К отбору проб животного происхождения, в которых предполагается наличие следовых количеств ЗВ, предъявляют особые, дополнительные требования. Важно, чтобы проба была репрезентативной для всего исследуемого организма (человека или животного). В частности, в пробах крови, взятых из различных органов, часто обнаруживаются существенные различия. По этой причине необходимо особенно точно указывать условия отбора проб, в том числе и место отбора в организме. Следует также указывать особенности биологии исследуемых видов, стадию их развития и степень контактов с природной средой.

Пробы тканей могут отбираться отдельно для каждой из особей, как это рекомендуется при обследовании крупных животных, либо усредняются в единый образец.

Моллюсков собирают из расположенных в обследуемом районе водоемов: водохранилищ, прудов, озер, рек, ручьев (желательно по одной пробе из каждого водоема). Каждая проба должна содержать особи одного вида: по 5 – 8 экземпляров половозрелых животных (40 – 80 мм) с общим весом без раковин не менее 50 г. Отобранных моллюсков помещают на фильтровальную бумагу и после удаления заворачивают в фольгу или кальку. Пробы также хранятся до анализа замороженными. Раковины отбирают и анализируют отдельно. Если обследуется один водоем, то пробы собирают с пяти створов, расположенных в разных местах этого водоема.

Для отбора проб тканей рыб их вылавливают в летний период. Отбирают пять экземпляров взрослых щук или окуней (если этих видов нет, то других хищников, обитающих в исследуемом водоеме). Для определения возраста измеряются длина рыб и снимается чешуя, которую упаковывают отдельно. Отбираются пробы мышц с боков и хвоста рыбы, а также икра или молоки.

Иногда для контроля за содержанием ЗВ в воде, в местах сброса сточных вод вылавливают придонных рыб (карп, лещ). В этом случае желательно тех же местах отобрать для обследования и моллюсков.

Особого внимания требуют процедуры отбора крови. Для предотвращения загрязнения тканевой жидкостью существенно, чтобы отбирались пробы только свободно вытекающей крови. На состав образца влияет и положение человека (крупного животного) в ходе отбора пробы. В положении лежа внеклеточная жидкость устремляется в кровеносные сосуды, разбавляя тем самым белки плазмы крови, при этом изменяя концентрации определяемых компонентов могут достигать 20 % и давать ошибочные результаты анализа. При необходимости хранения проб длительное время возникает проблема их стабильности вследствие процессов коагуляции. Следует немедленно после отбора добавить антикоагулянт.

Отбор замороженного или охлажденного мяса производят из однородной партии. Пробу мяса (без жира) от туш берут кусками массой не менее 200 г в области шейных позвонков, лопатки, бедра, мышц спины. Общая масса пробы 1 – 2 кг. В таком же количестве отбирают и образцы исследуемых субпродуктов. При отборе проб мяса птицы из каждой партии отбирают по три тушки. Аналогично отбирают и мясо кроликов. При необходимости пробы замораживают.

Пробы молока берут после тщательного перемешивания, добиваясь полной однородности и не допуская сильного вспенивания. Из серии точечных проб составляют объединенную, объемом 1 л. До начала анализа пробы хранят при температуре +2 — +8 оС. При длительном хранении молоко замораживают.

Важно, чтобы количественные параметры любой пробы фиксировались достаточно точно (т. е. с минимальной погрешностью измерения), а сам пробоотбор был максимально экспрессным (например для воздуха – не более 20 – 30 мин, а в рабочей зоне 15 мин.).

Важна также гомогенность пробы отбираемого материала (или потока среды). Рекомендуется отбирать несколько одинаковых проб (минимально 2 – 3, а в рабочей зоне до 5) в одной и той же точке пробоотбора. Количество пробы должно быть достаточным (в соответствии с применяемой методикой анализа).

Все измеряемые характеристики (масса, объем, время, место пробоотбора), а также исходные климатические и другие рабочие условия должны тщательно протоколироваться.

Читайте также:  Стена из искусственных растений в квартире

Средства контроля почв и других твердых веществ и материалов.

По сравнению с газоанализаторами и средствами анализа жидкостей, приборы контроля почв наименее распространенны, что определяется не столько меньшей потребностью в них, сколько сложностью данного вида анализаторов. Известны только определенные представители таких портативных средств контроля почв: анализаторы ртути типа УКР — 1 (МП «Экон», Москва), РА — 915 (НПФАП «Люмэкс», Санкт-Петербург), ЭГРА — 01 (ФГУ НПП «Геологоразведка»), анализатор ртути «Юлия — 2», а также АМА — 254 («LECO» Чехия).

Кроме того, в геологоразведке применяется рентгено-радиометрический анализатор химических элементов РПП-105, основанный на рентгено-флуоресцентном методе анализа.

Для массового контроля параметров состояния почвы применяются практически только универсальные лабораторные приборы стационарного типа с соответствующими официальными методиками.

Для реализации допущенных к применению при выполнении работ в области загрязнений почв методик применяются:

    фотометрические приборы около 26 % (22 методики), атомно-абсорбционные или атомно-эмиссионные спектрометры — 21 % (20), хроматографы (газожидкостные, ионные) — 40 % (18), электрохимические приборы — 11 % (9), титраторы — 7 % (6), хромато — масс — спектрометры — 5 % (2), ИК — спектрометры, флуориметры — по 2,5 % (2), остальные 3 — 4 % (3).

Таким образом, и в этом случае «лидерами» среди приборов остаются все те же фотометры, атомные спектрометры, хроматографы, которые в сумме обеспечивают более 70 % всех количественных измерений.

Характерно, что несмотря на «депонирующий» характер почв, накапливающих в себе загрязняющие вещества, поступающие из других сред, по сравнению с атмосферой или водоемами обычно отличается значительно меньше подлежащих контролю загрязняющих веществ и других показателей загрязнения почв. Известны несколько официальных перечней нормируемых в почве веществ, в основном по линии Санэпидемслужбы и Госстандарта России. Это перечень химических веществ в почве, по которым установлены ПДК и ОДК (№ 000 — 91), дополнение № 1 к нему — Перечень ОДК тяжелых металлов и мышьяка (ГН 2.1.7.020 — 94), а также два стандарта — ГОСТ 17.4.1.02-83 и ГОСТ 17.4.2.01-81. Охрана природы. Почвы. Номенклатура показателей стандартного состояния.

В первом, главном перечне проводится 108 значений ПДК и 70 ОДК, во втором — дополнительно еще 6 величин ОДК веществ в почве. В сумме примерно 180 нормируемых веществ.

В основном это пестициды — 140, минеральные удобрения — 10, тяжелые металлы: Pb, Cd, Hg, Cr, Cu, Ni, Co, Mn, Zn, V, As, Sb, некоторые неорганические анионы: NO3-, SO42-, PO43-, Cl-, F-, S и H2S,

> 10 органических соединений, не относящихся к числу ядохимикатов: ацетальдегид, бензин, бензол, изопропилбензол, o-, м-, n — ксилолы, стирол, толуол, формальдегид и др.

Если обратиться к перечням уже существующих методик и просуммировать количество указанных в них веществ, то получается следующее. Список методик количественного химического анализа почв, допущенных к применению по РД 52.18.595-96, включает около 30 веществ или их групп. В аналогичном перечне известного справочного пособия «Экометрия» можно обнаружить уже более 90 веществ, гигиенически нормируемых в почве и обеспеченных методиками анализа.

Сопоставление перечней нормируемых веществ в воде и почвах показывает их достаточно существенное совпадение. При этом водный перечень значительно больше и практически полностью «накрывает» почвенный. Разница отмечается по группе пестицидов и других «супертоксикантов», а также по ненормируемым в почве (и нормируемым в воде) нескольким десяткам других загрязняющих веществ. Таким образом, сводный перечень приоритетных при контроле почв ЗВ составляет примерно 30 веществ.

Средства измерений универсально назначения

К средствам измерений универсального назначения относятся:

    атомно-абсорбционные и атомно-эмиссионные спектрометры, рентгено-флуоресцентные анализаторы, электрохимические приборы; фотометры, спектрофотометры, УФ-спектрометры и др., ЯМР-спектрометры, ИК-спектрометры, хроматографы (жидкостные и газовые), масс-спектрометры, биолюминесцентные и другие лабораторные анализаторы.

Фотометры, флюориметры и спектрофотометры

Абсолютные лидеры по числу используемых с их помощью методик анализа веществ в объектах окружающей среды (35 — 50 %) в настоящее время. Чувствительность метода составляет 10-7 М (10-2 мкг/мл или мг/л). В большинстве же случаев измеряют концентрации, равные 10-6-10-4 М (0,1-10 мкг/мл).

Спектрофотометрический метод считается средне чувствительным.

При этом селективность спектрофотометрии также не является наилучшей и спектрофотометрический метод называют даже «спектрально неселективным». Поэтому в спектрофотометрии селективность обеспечивают главным образом на стадии пробоподготовки — выбором реагента, наиболее селективно взаимодействующего с определяемым веществом, а также условиями проведения (варьированием рН, выбор растворителя, маскирование) и разделением уже окрашенных компонентов реакции. Воспроизводимость результатов спектрофотометрического определения также может характеризоваться как «средняя». Этому способствует большое число случайных погрешностей, возникающих при приготовлении анализируемых растворов, за счет неполноты перевода определяемого компонента в фотометрируемое соединение и влияния посторонних компонентов, погрешностей контрольного опыта, наличием «кюветной» погрешности, погрешности установления нужной длины волны и др.

Поэтому обычно относительная погрешность спектрофотометрических (фото — и колориметрических) методик составляют в среднем около 20 — 25 % (хотя приборная погрешность фотометра не превышает 1 — 2%).

Тем не менее, эти приборы остаются лидерами по распространенности среди других универсальных приборов лабораторного анализа.

Из отечественных спектрофотометров «сканирующего» типа в настоящее время наиболее хорошо известен широкополосной (спектральный диапазон 190 — 1100 нм) и высокоточный (погрешность измерения ± 0,25-0,5 %) однолучевой автоматизированный спектрофотометр СФ-56А, управляемый персональным компьютером. По своим аналитическим возможностям, эксплуатационным и метрологическим характеристикам, а также по стоимости (примерно 5100 $ без компьютера) на сегодня действительно универсальным прибором для экоаналитических лабораторий может считаться СФ — 56. Другие модели: СФ — 2000 (

4800 $ без компьютера), СФ — 46 (б/у от 2800 $).

Среди более дешевых отечественных фотометрических приборов можно отметить базовую модель Загорского оптико-механического завода — фотоколориметр КФК — 3 (850 — 1000 $) со спектральным диапазоном 315 — 990 нм и основной абсолютной погрешностью при измерении коэффициента пропускания 0,5 %.

Другие модели: портативный переносной КФК-05, микрофотоколориметры МКФМ-02, МКМФ-02П.

Люминесцентная спектроскопия (ЛМС)

Этот метод, по сравнению с фотометрией, привлекает аналитиков, прежде всего своей более высокой чувствительностью. Для большинства определяемых этим методом соединений пределы обнаружения

Источник