Меню

Экспериментальное получение мутаций селекции растений

Индуцированный мутагенез.

Экспериментальное получение мутаций у растений и микроорганизмов и их использование в селекции

Эффективными способами получения исходного материала являются методы индуцированного мутагенеза – искусственного получения мутаций. Индуцированный мутагенез позволяет получить новые аллели, которые в природе обнаружить не удается. Например, этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д. Экспериментально полученные мутации у растений и микроорганизмов используют как материал для искусственного отбора. Этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д.

Для получения индуцированных мутаций у растений используют физические мутагены (гамма-излучение, рентгеновское и ультрафиолетовое излучение) и специально созданные химические супермутагены (например, N-метил-N-нитрозомочевина).

Дозу мутагенов подбирают таким образом, чтобы погибало не более 30…50% обработанных объектов. Например, при использовании ионизирующего излучения такая критическая доза составляет от 1…3 до 10…15 и даже 50…100 килорентген. При использовании химических мутагенов применяют их водные растворы с концентрацией 0,01…0,2%; время обработки – от 6 до 24 часов и более.

Обработке подвергают пыльцу, семена, проростки, почки, черенки, луковицы, клубни и другие части растений. Растения, выращенные из обработанных семян (почек, черенков и т.д.) обозначаются символом M1 (первое мутантное поколение). В M1 отбор вести трудно, поскольку большая часть мутаций рецессивна и не проявляется в фенотипе. Кроме того, наряду с мутациями часто встречаются и ненаследуемые изменения: фенокопии, тераты, морфозы.

Поэтому выделение мутаций начинают в M2 (втором мутантном поколении), когда проявляется хотя бы часть рецессивных мутаций, а вероятность сохранения ненаследственных изменений снижается. Обычно отбор продолжается в течение 2…3 поколений, хотя в некоторых случаях для выбраковки ненаследуемых изменений требуется до 5…7 поколений (такие ненаследственные изменения, сохраняющиеся на протяжении нескольких поколений, называют длительными модификациями).

Полученные мутантные формы или непосредственно дают начало новому сорту (например, карликовые томаты с желтыми или оранжевыми плодами) или используются в дальнейшей селекционной работе.

Однако применение индуцированных мутаций в селекции все же ограничено, поскольку мутации приводят к разрушению исторически сложившихся генетических комплексов. У животных мутации практически всегда приводят к снижению жизнеспособности и/или бесплодию. К немногим исключениям относится тутовый шелкопряд, с которым велась интенсивная селекционная работа с использованием авто- и аллополиплоидов (Б.Л. Астауров, В.А. Струнников).

Соматические мутации. В результате индуцированного мутагенеза часто получают частично мутантные растения (химерные организмы). В этом случае говорят о соматических (почковых) мутациях. Многие сорта плодовых растений, винограда, картофеля являются соматическими мутантами. Эти сорта сохраняют свои свойства, если их воспроизводят вегетативным путем, например, прививая обработанные мутагенами почки (черенки) в крону немутантных растений; таким путем размножают, например, бессемянные апельсины.

Полиплоидия. Как известно, термин «полиплоидия» используется для обозначения самых разнообразных явлений, связанных с изменением числа хромосом в клетках.

Автополиплоидия представляет собой многократное повторение в клетке одного и того хромосомного набора (генома). Автополиплоидия часто сопровождается увеличением размеров клеток, пыльцевых зерен и общих размеров организмов. Например, триплоидная осина достигает гигантских размеров, долговечна, её древесина устойчива к гниению. Среди культурных растений широко распространены как триплоиды (бананы, чай, сахарная свекла), так и тетраплоиды (рожь, клевер, гречиха, кукуруза, виноград, а также земляника, яблоня, арбузы). Некоторые полиплоидные сорта (земляника, яблоня, арбузы) представлены и триплоидами, и тетраплоидами. Автополиплоиды отличаются повышенной сахаристостью, повышенным содержанием витаминов. Положительные эффекты полиплоидии связаны с увеличением числа копий одного и того же гена в клетках, и, соответственно, в увеличении дозы (концентрации) ферментов. Как правило, автополиплоиды менее плодовиты по сравнению с диплоидами, однако снижение плодовитости обычно с лихвой компенсируется увеличением размеров плодов (яблони, груши, винограда) или повышенным содержанием определенных веществ (сахаров, витаминов). В то же время, в ряде случаев полиплоидия приводит к угнетению физиологических процессов, особенно при очень высоких уровнях плоидности. Например, 84-хромосомная пшеница менее продуктивна, чем 42-хромосомная.

Аллополиплоидия – это объединение в клетке разных хромосомных наборов (геномов). Часто аллополиплоиды получают путем отдаленной гибридизации, то есть при скрещивании организмов, принадлежащих к различным видам. Такие гибриды обычно бесплодны (их образно называют «растительными мулами»), однако, удваивая число хромосом в клетках, можно восстановить их фертильность (плодовитость). Таким путем получены гибриды пшеницы и ржи (тритикале), алычи и терна, тутового и мандаринового шелкопряда.

Полиплоидия в селекции используется для достижения следующих целей:

Читайте также:  Многолетнее травянистое растение семейства норичниковых 6 букв

– получение высокопродуктивных форм, которые могут непосредственно внедряться в производство или использоваться как материал для дальнейшей селекции;

– восстановление плодовитости у межвидовых гибридов;

– перевод гаплоидных форм на диплоидный уровень.

В экспериментальных условиях образование полиплоидных клеток можно вызвать воздействием экстремальных температур: низкими (0…+8 °С) или высокими (+38…+45 °С), а также путем обработки организмов или их частей (цветков, семян или проростков растений, яйцеклеток или эмбрионов животных) митозными ядами. К митозным ядам относятся: колхицин (алкалоид безвременника осеннего – известного декоративного растения), хлороформ, хлоралгидрат, винбластин, аценафтен и др.

Источник

Экспериментальный мутагенез и его использование в селекции

6.1 Мутационная изменчивость и ее значение в селекции

В современной селекции используются следующие виды и способы получения, исходного материала:

1) естественные популяции;

2) гибридные популяции;

3) самоопыленные линии (инцухт-линии);

4) искусственные мутации и полиплоидные формы.

Значения различных видов исходного материала в истории развитии селекции и настоящее время не одинаково.

Сегодня мы становимся на искусственных мутациях.

Искусственный или экспериментальный мутагенез – важнейший источник создания исходного селекционного материала, основанный на применении ионизирующих излучений и химических мутагенов.

Сведения о первых работах по мутантам появились в 20-30 годах нашего столетия, в Советском Союзе известными учеными Сапегиным А.А. были получены ряд хозяйственно- полезных мутационных форм у пшеницы.

Однако лишь в 50-ые годы, благодаря крупным успехам ядерной физики и химии, добились получения на различных культурах практически ценных наследственных культурах.

В Институте химической физики АНСССР под руководством И. А. Рапопорта работает центр по химическому мутагенезу, являющийся кандидатом многих сельскохозяйственных НИУ, работающих по данному вопросу.

Подробно останавливаться вообще о мутациях, истории развития, становлений, о многочисленных зарубежных ученых и их результатах мы не будем, о них разговор вели на предыдущих лекциях по генетики и селекции.

Возможны 2 пути селекционного использования искусственных мутаций: – прямое использование мутаций, полученных у самых раионированных сортов; 2- использование мутации в процессе гибридизации.

В первом случае ставится задача улучшения существующих сортов по некоторым хозяйственно- биологическим признакам, исправления у них отдельных недостатков. Этот метод считается перспективным в селекции на устойчивость заболеваниям. Предполагается, что у любого ценного сорта можно быстро получить мутации устойчивости и сохранив при этом нетронутыми др. хозяйственно-биологические признаки, что дало бы возможность селекционерам быстро реагировать на рассообразование паразитов.

6.2 Методы использования мутации

Первый путь метод прямого использования мутации рассчитан на быстрое создание исходного материала с нужными признаками и свойствами. Однако прямое и быстрое использование мутаций при тех высоких требованиях, которые предъявляются в современным селекционным сортам, далеко не всегда дает положительные результаты.

Второй путь использования искусственных мутаций

Полученный вследствие мутагенезу исходный материал должен, как правило, пройти через гибридизацию.. Мутации могут изменять свое аренотипическое выражение в зависимости от того, в какой генотип они включаются. Особенно это относится к малым аризиологическим мутациям. Поэтому скрещивание качественно меняет влияние отдельных мутаций на развитие многих признаков и свойств: широко применяются также сочетание индуцированного мутагенеза с гибридизацией, обработка мутагенезами гибридных семян F; F, и старших поколений, скрещивание мутантных форм между собой и с лучшими раионированными сортами, бекрасовая гибридизация.

Третий путь. Используется эксперимент мутагенез и совместно с отдаленной гибридизацией. Путем искусственных мутаций в ряде случаев удается преодолевать нескрещиваемость разных далеких видов растений, а также производить пересадку путем трасплонтаций отдельных локусов хромосом диких видов в хромосомный комплекс культурных растений (в США от эгилопса перенесли в геном пшеницы локус, контролирующий уст. к ржав. от пырея, локус, контролирующий уст. к стебл. ржавчин и головке и т.д.).

Закономерности эксп. мутагенеза у различных сортов подчиняются закону гомологических рядов в наследс. изменчивости.

Процесс мутирования связанный с изменением отдельных генов, и с перестройкой хромосом (фрагментация нехватки, генверсии, дупликации, транслокации), обычен для всех растений. Однако в природных популяциях выявить процесс мутирования трудно. Появляющиеся в результате мутации новые признаки в естественных условиях природы обычно характеризуют в лучшем случае 1% взятых растений, а часто эта цифра до 1 . 10-6 и даже меньше.

Огромное большинство естественно возникающих и экспериментально вызываемых мутаций рецессивно. Но мутации доминантного характера не исключены полностью, хотя и более редки.

(возникновение красной окраски колоса у белоколосой пшеницы, крайне быстро развивающиеся и плодоносящие на первом году мутанты лесной земляники). В некоторых случаях возникновение доминантных признаков растений с соответствующими рецессивными признаками может быть связано не с непосредственным переходом определенного рецессивного в его доминантную, а с мутацией гена иного локуса. Такой новый мутантный ген может подавлять эффект предшествующей мутации и вызывать возврат к проявлению доминантных признаков исходной формы.

Читайте также:  Тимонин анатомия и морфология растений

Мутирование стало известно генетикам почти с законами Менделя. Но эволюционное значение этого явления долго было предметом дискуссий. Многие из известных мутаций шли в направлении ослабления организма и были обусловлены или явно вредными перестройками хромосом, или вредными генами. Это вызывало сомнение в прогрессивной роли мутации.

Экспериментальное получение мутаций на заре XX века не было разработано, и существовало мнение, что этот процесс управляется не включительно внутренними характерами структуры клетки. Открытие индуцирования мутации лучами Рентгена показало возможность значительного повышения частоты мутации под влиянием характера внешней среды. Но зависимость характера мутации от исходного генотипа была несомненной. Первые опыты экспериментального получения мутантов у растений при помощи лучей Рентгена дали Картину, во многом напоминающую ту, что наблюдается после инбридинга у аллогамных растений. А такое проявление ганотипической изменчивости было мало интересно селекционеру того времени. Лишь значительно позднее, в середине XX столетия, были общие закономерности мутационного процесса и положительные перспективы его использования в селекции растений.

1. Мутационная изменчивость и ее значение в селекции.

Источник

Пути использование экспериментально мутагенеза в селекции растений

Пути использование экспериментально мутагенеза в селекции растений идет обычно по одному нижеследующих путей: при бочковых или генных мутациях (результат изменения молекулярной структуры ДНК) – у самоопыляющихся растений практически ценные мутанты могут сразу размножатся и поступать на конвейер отбора.

Полученные мутанты также вовлекаются в скрещивания (с исходной формой и между собой в пределах одного сорта и между мутантами, полученными в разных сортах). В результате таких скрещиваний в М2 могут возникнуть интересные комбинации мутантных генов, которые выделяют как перспективный материал для последующей работы.

Большой интерес представляет также индицирование мутаций в гибридных популяциях в качестве источника изменчивости;

При ориентации на почковые мутации у перекрестноопыляющихся растений основное внимание обычно отдается индицированию мутации в свободно переопыляющихся мутациях, а за ним следует размножение мутантов, выделяемых семейственным, групповым и массовым отборами.

Проводится также искусственное скрещивание мутантов с исходной и другими формами.

Выделяют гетерозисные формы, возникший в М, от скрещивания мутантов между собой и другими формами.

При ориентации на бочковые мутации у вегетативно размножаемых растений обычно индуцируют мутации в вегетативных органах в качестве источника разнообразия форм для клонового отбора, а затем следует отбор доминантных и рецессивных (возникших у гетерозигот) мутантов, выявляющихся естественно, и несколько позже отбор мутантов выявляемых в результате расхимеривания (химер особей состоит из клеток разл. генетт. структуры) и демаскирования рецессивных изменений. Параллельно с этим проводят индуцирование мутаций в семенных потомствах вегетативно размножаемых растений, чтобы иметь источник дополнительной изменчивости их с последующим вегетативным закреплением полезных форм.

При получений получении хромосомных мутаций селекционная работа идет в следующих направлениях:

1) использование транслокации для межвидового и межродового переноса единичных желательных признаков и как средство разделения тесно сцепленных генов;

2) получение направленных дупликаций;

3) диплоидизация аутополиплоидов и использование хромосомных мутаций типа перестроек, моно-и полисомиков в качестве механизма предупреждения или сокращения самоопыления в некоторых популяциях.

Контрольные вопросы

1. Особенности выявления мутантов и самоопыляющихся, перекрестно-опыляющихся и вегетативно размножающихся растений

2. Пути использование экспериментально мутагенеза в селекции растений

Источник

Экспериментальное получение мутаций у растений и микроорганизмов и их использование в селекции

Эффективными способами получения исходного материала являются методы индуцированного мутагенеза – искусственного получения мутаций. Индуцированный мутагенез позволяет получить новые аллели, которые в природе обнаружить не удается. Например, этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д. Экспериментально полученные мутации у растений и микроорганизмов используют как материал для искусственного отбора. Этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д.

Для получения индуцированных мутаций у растений используют физические мутагены (гамма-излучение, рентгеновское и ультрафиолетовое излучение) и специально созданные химические супермутагены (например, N-метил-N-нитрозомочевина).

Читайте также:  Проект растения и животные кировской области

Дозу мутагенов подбирают таким образом, чтобы погибало не более 30…50% обработанных объектов. Например, при использовании ионизирующего излучения такая критическая доза составляет от 1…3 до 10…15 и даже 50…100 килорентген. При использовании химических мутагенов применяют их водные растворы с концентрацией 0,01…0,2%; время обработки – от 6 до 24 часов и более.

Обработке подвергают пыльцу, семена, проростки, почки, черенки, луковицы, клубни и другие части растений. Растения, выращенные из обработанных семян (почек, черенков и т.д.) обозначаются символом M1 (первое мутантное поколение). В M1 отбор вести трудно, поскольку большая часть мутаций рецессивна и не проявляется в фенотипе. Кроме того, наряду с мутациями часто встречаются и ненаследуемые изменения: фенокопии, тераты, морфозы.

Поэтому выделение мутаций начинают в M2 (втором мутантном поколении), когда проявляется хотя бы часть рецессивных мутаций, а вероятность сохранения ненаследственных изменений снижается. Обычно отбор продолжается в течение 2…3 поколений, хотя в некоторых случаях для выбраковки ненаследуемых изменений требуется до 5…7 поколений (такие ненаследственные изменения, сохраняющиеся на протяжении нескольких поколений, называют длительными модификациями).

Полученные мутантные формы или непосредственно дают начало новому сорту (например, карликовые томаты с желтыми или оранжевыми плодами) или используются в дальнейшей селекционной работе.

Однако применение индуцированных мутаций в селекции все же ограничено, поскольку мутации приводят к разрушению исторически сложившихся генетических комплексов. У животных мутации практически всегда приводят к снижению жизнеспособности и/или бесплодию. К немногим исключениям относится тутовый шелкопряд, с которым велась интенсивная селекционная работа с использованием авто- и аллополиплоидов (Б.Л. Астауров, В.А. Струнников).

Соматические мутации. В результате индуцированного мутагенеза часто получают частично мутантные растения (химерные организмы). В этом случае говорят о соматических (почковых) мутациях. Многие сорта плодовых растений, винограда, картофеля являются соматическими мутантами. Эти сорта сохраняют свои свойства, если их воспроизводят вегетативным путем, например, прививая обработанные мутагенами почки (черенки) в крону немутантных растений; таким путем размножают, например, бессемянные апельсины.

Полиплоидия. Как известно, термин «полиплоидия» используется для обозначения самых разнообразных явлений, связанных с изменением числа хромосом в клетках.

Автополиплоидия представляет собой многократное повторение в клетке одного и того хромосомного набора (генома). Автополиплоидия часто сопровождается увеличением размеров клеток, пыльцевых зерен и общих размеров организмов. Например, триплоидная осина достигает гигантских размеров, долговечна, её древесина устойчива к гниению. Среди культурных растений широко распространены как триплоиды (бананы, чай, сахарная свекла), так и тетраплоиды (рожь, клевер, гречиха, кукуруза, виноград, а также земляника, яблоня, арбузы). Некоторые полиплоидные сорта (земляника, яблоня, арбузы) представлены и триплоидами, и тетраплоидами. Автополиплоиды отличаются повышенной сахаристостью, повышенным содержанием витаминов. Положительные эффекты полиплоидии связаны с увеличением числа копий одного и того же гена в клетках, и, соответственно, в увеличении дозы (концентрации) ферментов. Как правило, автополиплоиды менее плодовиты по сравнению с диплоидами, однако снижение плодовитости обычно с лихвой компенсируется увеличением размеров плодов (яблони, груши, винограда) или повышенным содержанием определенных веществ (сахаров, витаминов). В то же время, в ряде случаев полиплоидия приводит к угнетению физиологических процессов, особенно при очень высоких уровнях плоидности. Например, 84-хромосомная пшеница менее продуктивна, чем 42-хромосомная.

Аллополиплоидия – это объединение в клетке разных хромосомных наборов (геномов). Часто аллополиплоиды получают путем отдаленной гибридизации, то есть при скрещивании организмов, принадлежащих к различным видам. Такие гибриды обычно бесплодны (их образно называют «растительными мулами»), однако, удваивая число хромосом в клетках, можно восстановить их фертильность (плодовитость). Таким путем получены гибриды пшеницы и ржи (тритикале), алычи и терна, тутового и мандаринового шелкопряда.

Полиплоидия в селекции используется для достижения следующих целей:

— получение высокопродуктивных форм, которые могут непосредственно внедряться в производство или использоваться как материал для дальнейшей селекции;

— восстановление плодовитости у межвидовых гибридов;

— перевод гаплоидных форм на диплоидный уровень.

В экспериментальных условиях образование полиплоидных клеток можно вызвать воздействием экстремальных температур: низкими (0…+8 °С) или высокими (+38…+45 °С), а также путем обработки организмов или их частей (цветков, семян или проростков растений, яйцеклеток или эмбрионов животных) митозными ядами. К митозным ядам относятся: колхицин (алкалоид безвременника осеннего – известного декоративного растения), хлороформ, хлоралгидрат, винбластин, аценафтен и др.

Дата добавления: 2014-01-15 ; Просмотров: 3574 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник