Меню

Электромагнитные волны и рост растений

Влияние электромагнитного излучения на растения

В настоящее время актуальной проблемой биологической науки является поиск новых технологий для целенаправленного воздействия на животные и растительные организмы. Часто подобные технологии основываются на воздействии физических факторов, например, особый интерес у учёных вызывает электромагнитное излучение.

Электромагнитное излучение (ЭМИ) является физическим фактором среды, который оказывает существенное влияние на различные живые организмы, поэтому данный вид излучения находит применение в медицине, в некоторых отраслях промышленности и сельском хозяйстве. Количество техногенных источников и их мощности уже сейчас позволяют говорить о ЭМИ в СВЧ и КВЧ диапазонах, как о важном техногенном факторе окружающей среды, влияющим на стабильность экосистем.

Миллиметровое излучение активно используется в медицине, биологии и химии. Описано влияние на различные физиологические процессы и свойства у микроорганизмов и растений: клеточное деление, морфологические признаки, скорость роста, выход биомассы, ферментативную активность и др.
Необходимо отметить, что КВЧ-излучение можно отнести к сверхслабым воздействиям, так как количество поглощаемой объектом энергии ничтожно мало, но его влияние на живые объекты бывает впечатляющим.

ЭМИ сантиметрового диапазона (СВЧ-излучение) находит применение в медицине и микробиологии. Многие исследователи использовали СВЧ- излучение для подавления роста микроорганизмов при стерилизации всевозможных объектов.

В последние годы было опубликовано несколько работ по исследованию воздействия ЭМИ на фотосинтезирующие организмы (Тамбиев, Кирикова, Лихачёва и др.). Однако большинство этих работ посвящены изучению цианобактерий и водорослей. Сведения о воздействии ЭМИ на растения встречаются редко и довольно скупы.

Эффекты от воздействия ЭМИ на растения зависят от параметров ЭМИ, экспозиции и могут быть как стимулирующими, так и угнетающими.

Далее следует обзор нескольких статей по данной теме.

Калье Мария Игоревна
ВЛИЯНИЕ КВЧ-ИЗЛУЧЕНИЯ НА МОРФОФИЗИОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ И АКТИВНОСТЬ ФЕРМЕНТОВ ПРОРАСТАЮЩИХСЕМЯН ЗЕРНОВЫХ КУЛЬТУР

В работе Калье М. И. было показано, что при воздействии на прорастающие семена пшеницы ЭМИ КВЧ-диапазона (61.20 ГГц) происходят изменения морфофизиологических параметров. Эти изменения зависят от параметров воздействия излучения.

Так, при длительных экспозициях наблюдается угнетение процессов прорастания у пшеницы. Также наблюдалось изменение скорости поглощения воды семенами и набухания.

Также было показано, что электромагнитное излучение изменяет активность гидролитических ферментов. Так излучение снижало общую активность амилаз, активность протеаз изменялась разнонаправлено, но преобладает активация ферментов. Также наблюдалась активация каталазы и пероксидазы. [1]

ВЛИЯНИЕ НИЗКОИНТЕНСИВНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ НА АКТИВНОСТЬ АМИЛАЗЫ В ПРОРОСТКАХ LUPINUS ANGUSTIFOLIUS L.
Ж.Э. Мазец, К.Я. Кайзинович, Н.В. Пушкина, В.Н. Родионова, Е.В. Спиридович

Есть данные о воздействии ЭМИ на прорастающие семена люпина и активности амилазы после воздействия ЭМИ. В работе, проведённой в БГПУ им.М. Танка семена люпина подвергали облучению ЭМИ в 3-х режимах: Режим 1 (частота обработки 53,57–78,33 ГГц, время обработки 20 минут); Режим 2 (частота обработки 64,0–66,0 ГГц, время обработки 12 минут) и Режим 3 (частота обработки 64,0–66,0 ГГц, время обработки 8 минут). После этого определяли всхожесть семян, активность ферментов и другие морфо-физиологические показатели.

Было установлено, что разные режимы по разному влияют на активность амилаз. 1 и 3 режим повышают активность ферментов, тогда как режим 2 снижает её. [2]

К ВОПРОСУ О МЕХАНИЗМАХ ВЗАИМОДЕЙСТВИЯ НИЗКОИНТЕНСИВНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ С РАСТИТЕЛЬНЫМИ ОБЪЕКТАМИ
Ж.Э. Мазец

Что касается фермента каталаза, то есть сведения, что ЭМИ увеличивает активность фермента после облучения семян. Это было продемонстрировано в работе Ж.Э. Мазец, которая была проведена на семенах люпина узколистного.

Обработка семян Lupinus angustifolius L. производилась в НИИ ядерных проблем БГУ в трех режимах: Режим 1 (частота обработки 54–78 ГГц, время обработки 20 минут); Режим 2 (частота обработки 64–66 ГГц, время обработки 12 минут); Режим 3 (частота обработки 64–66 ГГц, время обработки 8 минут). [3]

ВЛИЯНИЕ КВЧ-ИЗЛУЧЕНИЯ МИЛЛИМЕТРОВОГО ДИАПАЗОНА НА ФИЗИОЛОГИЧЕСКИЕ ПРОЦЕССЫ ПРОРАСТАНИЯ СЕМЯН ПИВОВАРЕННОГО ЯЧМЕНЯ
М.И. Калье

Эксперименты с облучением, проведённые на семенах пивоваренного солода, показывают снижение энергии прорастания и всхожести у семян облучённых ЭМИ в отличии от контроля. Исследование активности гидролитических ферментов показывает как их активацию при одном времени обработки, так и ингибирование при другой экспозиции.

Полученные данные подтверждают мнение о специфическом влиянии волн миллиметрового диапазона, выраженном, с одной стороны, стимулирующим, а с другой стороны – угнетающим действием на растительный организм. [4]

Влияние облучённой ЭМИ дистиллированной воды на растительные объекты. З.Х-М. Хашаев, А. Ф. Кожокару, Э. М. Шекшеев

Помимо облучения семян, в литературе встречаются данные об облучении воды с последующей обработкой этой водой семян. Для опытов использовались семена пшеницы. Опыт состоял из трёх вариантов в трёх повторностях. Первый вариант – контроль, второй – облучали воду, затем в неё помещали предварительно замоченные в необлучённой воде необлучённые семена, третий – дополнительные контроль – облучались только семена или предварительно замоченные в необлучённой воде. Семена обрабатывались ЭМИ 42,25 ГГц,

Читайте также:  Экологические особенности растений засоленных почв

Проращивание семян в облучённой воде увеличивало их всхожесть. Следует также заметить, что и в опыте с облучёнными семенами наблюдалось увеличение всхожести. Это может говорить о том, что облучённая вода привела в активации схожих процессов, которые активируются при непосредственном облучении.

Также в статье приводятся данные, об опыте, целью которого было выявление длительности сохранения тех физико-химических изменений воды, которые ускоряли прорастание семян. Для этого облучённую воду через определённые промежутки времени добавляли к замоченным в необлучённой воде семенам. [5]

Литература:

1. Калье М. И. Влияние КВЧ – излучения на морфофизиологические показатели и активность ферментов прорастающих семян зерновых культур [Электронный ресурс] // Электрон. версия автореферата – 2016. – 10 февраля. – URL: http://earthpapers.net/vliyanie-kvch-izlucheniya-na-morfofiziologicheskie-pokazateli-i-aktivnost-fermentov-prorastayuschih-semyan-zernovyh-kultu (дата обращения: 10.02.2016).
2. Мазец Ж.Э., Кайзинович К.Я., Пушкина Н.В., Родионова В.Н., Спиридович Е.В. Влияние низкоинтенсивного электромагнитного излучения на активность амилазы в проростках LUPINUS ANGUSTIFOLIUS L. // Труды БГУ 2013, том 8, часть 2 – с. 95-101.
3. К вопросу о механизмах взаимодействия низкоинтенсивного электромагнитного излучения с растительными объектами. // Ж. Э. Мазец, К. Я. Кайзинович, А. Г. Шутова // Весцi БДПУ Серыя 3. Фiзiка, матэматыка, iнфарматыка, бiялогiя, геаграфiя. ¬ 2014. ¬ N 1. ¬ С. 26¬31
4. Калье М. И. Влияние КВЧ – излучения миллиметрового диапазона на физиологические процессы прорастания семян пивоваренного ячменя. // Вестник Нижегородского университета им. Н.И. Лобачевского, 2010, № 2 (2), с. 399–401.
5. Влияние облучённой ЭМИ дистиллированной воды на растительные объекты. З.Х-М. Хашаев, А. Ф. Кожокару, Э. М. Шекшеев. // Известия Южного федерального университета. Технические науки. Выпуск № 3. том 13. 1999. С. 274 – 281.

© Сергей Гапоненко, младший научный сотрудник лаборатории радиоэкологии

Источник

Воздействие магнитного поля на растения

ИЗУЧЕНИЕ СВОЙСТВ МАГНИТНОГО ПОЛЯ И ЕГО
ВЛИЯНИЕ НА РАСТЕНИЯ

Согласно современным представлениям, Земля образовалась примерно 4,5 млрд. лет назад, и с этого момента нашу планету окружает магнитное поле. Все, что находится на Земле, в том числе люди, животные и растения, подвергаются его воздействию. И это воздействие на живые организмы мы решили изучить. В большинстве случаев изучение влияния данного явления ведется именно по воздействию его на человека, о влиянии этого фактора на представителей других царств данных значительно меньше. Поэтому главное внимание мы решили уделить особенному влиянию этого фактора на некоторых представителей царства Растений.

Изучение проблемы, которую мы поднимаем в нашей работе, началось уже давно, еще в конце VII – начале VI вв. до н.э. милетским философом Фалесом впервые были описаны некоторые свойства электромагнитных явлений. Далее, на протяжении нескольких веков многие исследователи внесли немалый экспериментальный вклад в освещение этого вопроса. К середине XIX века были сделаны первые крупные открытия в электротехнике. Они связаны с именами датчанина Ганса Эрстеда, француза Андре Ампера, немца Георга Ома, англичанина Майкла Фарадея, наших соотечественников Бориса Якоби, Эмиля Ленца и Павла Шиллинга и многих других ученых. Но научное направление, которое исследует влияние магнитного поля на живые организмы и называется магнитная биология, появилось сравнительно недавно: в 70-х годах прошлого столетия.

Цель исследования — изучить влияние магнитного поля на некоторые растения.

1. Изучить понятие «магнетизм», свойства магнитов, магнитное поле Земли.

2. Проанализировать в научной литературе влияние магнитного поля на растения.

3. Поставить серию экспериментов, позволяющих установить влияние магнитного поля на изучаемые организмы.

4. Сравнить полученные результаты.

Предметом исследования данной работы являются семена растений: гороха, пшеницы и ржи, высаженные в землю после предварительного проращивания, и подвергнутые воздействию магнитных полей различной мощности.

Объектом исследования является изучение свойств магнитного поля и его влияние на растения.

В ходе выполнения работы применяются следующие методы исследования: изучение научной литературы, постановка эксперимента, наблюдение, математические методы подведения результатов.

В рамках работы будет осуществляться проверка следующей гипотезы : если поместить растения в магнитное поле большой мощности, это отразится на скорости их роста и изменит их свойства.

Работа состоит из введения, двух глав, заключения и списка используемой литературы.

Глава I.Магнитное поле и его влияние на растительный мир

1.1. Понятие о магнетизме, свойства магнитов, магнитное поле Земли.

Читайте также:  Соцветия растений примеры и рисунки

Магнетизм связан с тем, как располагаются атомы в материале. Каждый атом это крошечный магнит. Если все они выстроятся правильно, то их магнитные поля сложатся в большое магнитное поле и получится привычный нам магнит. К магнитам применимо правило «противоположности притягиваются». Если попытаться соединить одинаковые полюсы двух магнитов, то они оттолкнутся под воздействием магнитного поля. Магнитное поле представляет собой особый вид материи, посредством которого осуществляется взаимодействие между движущимися электрически заряженными частицами (электронами, протонами и т. д.). Магнитное поле существует вокруг проводников с током, живых организмов, а также вокруг Земли. Земля это гигантский магнит, у неё есть северный и южный магнитные полюсы, а также магнитное поле, которое охватывает всю поверхность и даже ближний космос. Магнитное поле Земли уменьшает влияние на всё живое губительных космических лучей. Явление магнетизма известно людям очень давно. Свое название оно получило от города Магнетии в Малой Азии. Известны случаи, когда большие запасы магнитного железняка, лежащие глубоко в недрах земли, давали о себе знать на поверхности. Еще в древности жители деревень расположенных у подножия горы на территории Южного Урала в Челябинской области заметили, что на горе почти не живут звери, а птицы стараются облетать ее стороной. Это сейчас мы понимаем, что животные очень восприимчивы к магнитному излучению и не очень его любят, а в то время люди, видя столь необычное поведение зверей, пугались и начинали тоже сторониться горы. Прошло много лет, ученые изобрели компасы — и сразу же выяснилось, что при приближении к горе стрелка компаса начинает без видимых причин отклоняться. Тогда-то гора и получила свое современное название — Магнитная.

Итак, магнетизм – это сила, которая действует на расстоянии и вызывается магнитными полями.

К основным свойствам магнитов относятся следующие: 1) каждый магнит создает вокруг себя магнитное поле, 2) каждый магнит имеет один северный и один южный полюс, 3) противоположные полюсы магнитов притягиваются, а одноименные отталкиваются.

Магнитное поле Земли – (также известное как геомагнитное поле) это силовое поле, образующееся от внутреннего ядра Земли и охватывающее всю её поверхность и даже ближний космос. Возьмем данные определения за основу в нашей работе.

1.2.Влияние магнитного поля на растения.

В наше время, в век новейших технологий, известны многие интересные факты о влиянии магнитных полей на некоторые живые организмы. Нами была найдена информация о том, что на растения магнитное поле Земли влияет положительно (5), более того, изолирование растения от магнитного поля с помощью клетки Фарадея ведет к ухудшению роста и развития растений.

Рассмотрим некоторые факты влияния магнитного поля на различные функции растений в зависимости от их ориентации в магнитном поле. Канадские ученые проводили эксперименты с семенами кукурузы и пшеницы. Семена смачивались и укладывались проростками вдоль линий геомагнитного поля. Те семена, которые были ориентированы к югу, взошли раньше других, их корни и стебли росли быстрее. В то же время, если пшеницу посеять рядами с запада на восток, то она дает лучший урожай, чем посеянная рядами с севера на юг (т. е. по магнитному меридиану). Если зародыш семени растения направлен в сторону южного геомагнитного полюса, то корни выросшего из него растения ориентируются определенным образом. Очень сильные магнитные поля вызывали у растений подавление роста корней, уменьшение фотосинтеза и другие неблагоприятные эффекты (4). Другие ученые склоняются к позитивным характеристикам при использовании умеренного магнитного поля для выращивания растений, так как улучшается их рост и развитие. Если же защитить растения от магнитного поля Земли, то это существенно скажется на их росте. У одних растений (огурцы, редис) рост ускоряется, а у других (ячмень, кукуруза) рост тормозится. Если прорастающие семена хвойных пород заэкранировать от магнитного поля Земли, то удлинится период их пребывания в состоянии покоя, уменьшается всхожесть семян. У растений, которые длительное время находились в среде без магнитного поля, отмечаются многие нарушения. Например, ячмень медленнее всходит по сравнению с такими же проростками, находящимися в геомагнитном поле. Было показано, что в магнитном поле Земли ориентируются даже водоросли (3). Мы предполагаем, что приспособленность растений к влиянию геомагнитного поля передается веками из поколения в поколение. Поэтому помещение растений в непривычную среду, с точки зрения силы магнитного поля, должно, по нашему предположению, изменить рост растений и их развитие.

Выводы по 1 главе. Мы рассмотрели только незначительную часть фактов о влиянии магнитного поля на растительный мир. Но из них четко следует, что такое влияние несомненно, и во многом является решающим.

Читайте также:  На домашних растениях мелкие черные жучки

Глава II. Экспериментальное изучение свойств магнитного поля и его влияние на растения

2.1.Эксперимент и его описание.

При проведении работы использовались следующие методы исследования: изучение литературы, эксперимент, наблюдение с использованием фото- и видеофиксации, математические методы подведения результатов. Экспериментальная работа проводилась нами с 20 октября 2016 г. по 20 ноября 2016 г. В качестве актуального примера магнитного поля мы взяли естественное магнитное поле Земли, а также ферромагнетик, помещенный рядом с экспериментальными образцами.

Цель эксперимента – осуществить проверку гипотезы: если поместить растения в магнитное поле большой мощности, то это отразится на скорости их роста и изменит их свойства. Экспериментальная работы была разделена на несколько этапов, каждый из которых фиксировался на фото- или видеокамеру.

1 этап – изучение доступной в библиотеках и сети Интернет литературы. 2 этап – изучение свойств магнитов, природы магнетизма. Поставлен опыт с «магнитной пушкой», который подтверждает наличие магнитного поля, обладающего определенной силой. 3 этап – подготовка материала к проведению опытов. Были закуплены семена растений : пшеница и рожь (семейство Злаки), горох (семейство Бобовые). Подготовлена почва для их выращивания. Семена замачивались по одинаковой методике для их проращивания. Проращивание семян применялось для того, чтобы исключить влияние случайного фактора неоднородной всхожести. 4 этап – пророщенные семена высажены в одинаковые условия, начато наблюдение за их ростом в условиях естественного геомагнитного поля. Произведено первое измерение длины ростков каждого вида растений. Результаты занесены в таблицу №2. 5 этап – разделение ростков на 2 группы. Каждый вид растений: рожь, пшеница и горох разделены на 2 группы. Одна группа является контрольной и продолжает развитие в условиях геомагнитного поля. Рядом с другой группой помещен мощный ферромагнетик. Наличие сильного магнитного поля ферромагнетика подтверждено компасом, стрелки которого четко реагируют на разные полюса магнита. 6 этап – наблюдение за ростом экспериментальных и контрольных растений. Производился регулярный полив растений одинаковым количеством воды для всех групп. Повторные измерения длины ростков проводились 1 раз в 7 дней. Всего произведено 3 измерения. Результаты заносились в таблицу №2. 7 этап – сравнение результатов и выводы по экспериментальной части.

2.2. Обсуждение результатов.

Мы решили, что наиболее доступным и правильным методом, который наглядно покажет различия между экспериментальной и контрольной группами, будет сравнение средней длины ростков каждого рода растений в начале и в конце эксперимента. Все измерения проводились одинаковым инструментом, в одинаковых условиях. Результаты занесены в таблицу №2, на основании которой построена диаграмма. При анализе результатов видно, что в начале эксперимента средняя длина ростков каждого рода растений в экспериментальной и контрольной группах практически не отличалась. К примеру средняя длина ростков пшеницы в контрольной группе 4 см, в экспериментальной группе 3,9 см, средняя длина ростков гороха в обеих группах по 3,2 см. Дальнейшее наблюдение показало существенные различия в росте и развитии растений находящихся в условиях магнитных полей различной силы. Так все растения контрольных групп уже через 6 дней наблюдения отличались большим ростом и развитием, чем их экспериментальные собратья. К 13 дню эти различия стали еще более очевидными, а рост гороха в экспериментальной группе практически остановился.

Выводы по 2 главе. Из опыта над различными объектами исследования мы сделали вывод, что очень сильное магнитное поле отрицательно влияет на рост и развитие некоторых растений семейств Злаки и Бобовые. И это влияние отмечается уже в самом начале роста.

Заключение. Биологическое действие магнитных полей — одна из наиболее актуальных проблем современности. Интерес к этому влиянию диктуется самой жизнью. Мы планируем далее продолжить наше исследование, чтобы получить новые данные по интересующей нас проблеме.

Список используемой литературы.

  • Бинги В.Н. Магнитобиология, эксперименты и модели. – М.: МИЛТА, 2000г.
  • Дубров А.П. Геомагнитное поле и жизнь. – М. : Гидрометеоиздат, 1974г.
  • Кузнецов, Вл. В. Физиология растений. Т.1: учебник для акад. бакалавриата. – 4-е изд. – М., 2016.
  • Новицкий Ю.И., Новицкая Г.В., Кочешкова Т.К., Ничипоренко Г.А., Добровольский М.В. Рост пера лука в слабом постоянном магнитном поле. Физиология растений, 48, 821-828, 2001г.
  • Новицкий Ю.И. Магнитное поле в жизни растений. Под ред. Епринцева А.Т. Воронеж: Центрально-черноземное книжное изд-во. вып 17, 8-19. 2002г.
  • Энциклопедия для детей. Т 2. Биология. – 5-е изд., / Глав. ред. М. Аксёнова – М.: Аванта +, 2004 г.

Источник