Меню

Энергетика клеток растений и животных

Энергетика клеток растений и животных

Основным источником энергии для всех живых существ, населяющих нашу планету, служит энергия солнечного света, которую используют непосредственно только клетки зеленых растений, водорослей, зеленых и пурпурных бактерий. В этих клетках из углекислого газа и воды в процессе фотосинтеза образуются органические вещества (углеводы, жиры, белки, нуклеиновые кислоты и др.). Поедая растения, животные получают органические вещества в готовом виде. Энергия, запасенная в этих веществах, переходит вместе с ними в клетки гетеротрофных организмов.

В клетках животных организмов энергия органических соединений при их окислении превращается в энергию АТФ. (Углекислый газ и вода, выделяющиеся при этом, вновь используются автотрофными организмами для процессов фотосинтеза.) За счет энергии АТФ осуществляются все процессы жизнедеятельности: биосинтез органических соединений, движение, рост, деление клеток и др.

Почему при окислении органических веществ освобождается энергия? Электроны, входящие в состав молекул органических соединений, обладают большим запасом энергии, они как бы подняты в них на высокий энергетический уровень. Когда электроны перемещаются с высокого уровня на более низкий (в своей или другой молекуле или атоме) энергия освобождается. Конечным преемником электронов служит кислород, поэтому он необходим для процессов окисления. В этом заключается его главная биологическая роль. Биологическое окисление органических веществ осуществляется в митохондриях и в корне отличается от горения. В процессе горения органических веществ почти вся энергия выделяется в виде теплоты. Процессы биологического окисления протекают ступенчато, при участии ферментов. При этом около 50% энергии органических веществ превращается в энергию АТФ, оставшаяся энергия окисления выделяется постепенно, не повреждая чувствительных к температуре белков.

Ферментативное расщепление глюкозы (гликолиз). Глюкоза — один из основных источников энергии для всех клеток. Из глюкозы построены молекулы полисахаридов крахмала (в клетках растений) и гликогена (в клетках животных).

При недостаточном поступлении органических веществ в клетки крахмал и гликоген расщепляются ферментами до глюкозы, которая окисляется далее и служит источником энергии.

В процессе окисления глюкозы в клетках участвует множество ферментов. Ферментативное расщепление и окисление глюкозы называют гликолизом. Ферменты, окисляющие глюкозу, образуют «ферментативный конвейер», на который поступают и постепенно расщепляются молекулы глюкозы. Условно процесс гликолиза можно разбить на три этапа.

Первый этап проходит в цитоплазме, на внешних мембранах митохондрий. На этом этапе одна шестиуглеродная молекула глюкозы распадается на две трехуглеродные молекулы пировиноградной кислоты (ПВК), и в итоге образуются две молекулы АТФ.

Второй этап окисления происходит на кристах митохондрий. В результате последовательных ферментативных реакций молекулы ПВК окисляются до CO2 образуются новые молекулы, богатые энергией, а водород переходит в особые молекулы — акцепторы водорода и электронов и носители энергии (это пиридиннуклеотиды НАД, НАДФ и др.).

Третий этап также протекает на внутренних мембранах митохондрий. Структуры, обеспечивающие прохождение третьего этапа, называют цепью переноса электронов. Электроны от молекул — носителей энергии с помощью ферментов перемещаются по звеньям цепи с более высокого энергетического уровня на менее высокий. Освобождающаяся при этом энергия аккумулируется в 36 молекулах АТФ. Электроны в конце концов соединяются с кислородом. В цепи переноса электронов кислород — их конечный преемник. Кислород при этом соединяется с водородом и образуется вода. Обеспечивая разность потенциалов в цепи переноса электронов, он как бы притягивает электроны с высоких энергетических уровней молекул — носителей энергии на свой низкоэнергетический уровень.

Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)

Источник

§ 38. Энергетика живой клетки

Преизобильное ращение тучных дерев,
которые на бесплодном песку корень
свой утвердили, ясно изъявляет, что
жирными листами жирный тук из воздуха
впитывают.
М. В. Ломоносов

Как энергия запасается в клетке? Что такое метаболизм? В чем суть процессов гликолиза, брожения и клеточного дыхания? Какие процессы проходят на световой и темновой фазах фотосинтеза? Как связаны процессы энергетического и пластического обмена? Что представляет собой хемосинтез?

Урок-лекция

Способность преобразовывать одни виды энергии в другие (энергию излучения в энергию химических связей, химическую энергию в механическую и т. п.) относится к числу фундаментальных свойств живого. Здесь мы подробно рассмотрим, каким образом реализуются эти процессы у живых организмов.

АТФ — ГЛАВНЫЙ ПЕРЕНОСЧИК ЭНЕРГИИ В КЛЕТКЕ. Для осуществления любых проявлений жизнедеятельности клеток необходима энергия. Автотрофные организмы получают исходную энергию от Солнца в ходе реакций фотосинтеза, гетеротрофные же в качестве источника энергии используют органические соединения, поступающие с пищей. Энергия запасается клетками в химических связях молекул АТФ (аденозинтрифосфат), которые представляют собой нуклеотид, состоящий из трех фосфатных групп, остатка сахара (рибозы) и остатка азотистого основания (аденина) (рис. 52).

Рис. 52. Молекула АТФ

Связь между фосфатными остатками получила название макроэргической, поскольку при ее разрыве выделяется большое количество энергии. Обычно клетка извлекает энергию из АТФ, отщепляя только концевую фосфатную группу. При этом образуется АДФ (аденозиндифосфат), фосфорная кислота и освобождается 40 кДж/моль:

Молекулы АТФ играют роль универсальной энергетической разменной монеты клетки. Они поставляются к месту протекания энергоемкого процесса, будь то ферментативный синтез органических соединений, работа белков — молекулярных моторов или мембранных транспортных белков и др. Обратный синтез молекул АТФ осуществляется путем присоединения фосфатной группы к АДФ с поглощением энергии. Запасание клеткой энергии в виде АТФ осуществляется в ходе реакций энергетического обмена. Он тесно связан с пластическим обменом, в ходе которого клетка производит необходимые для ее функционирования органические соединения.

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ В КЛЕТКЕ (МЕТАБОЛИЗМ). Метаболизм — совокупность всех реакций пластического и энергетического обмена, связанных между собой. В клетках постоянно идет синтез углеводов, жиров, белков, нуклеиновых кислот. Синтез соединений всегда идет с затратой энергии, т. е. при непременном участии АТФ. Источниками энергии для образования АТФ служат ферментативные реакции окисления поступающих в клетку белков, жиров и углеводов. В ходе этого процесса высвобождается энергия, которая аккумулируется в АТФ. Особую роль в энергетическом обмене клетки играет окисление глюкозы. Молекулы глюкозы претерпевают при этом ряд последовательных превращений.

Читайте также:  Пижма это кустарник или травянистое растение дикорастущее

Первый этап, получивший название гликолиз, проходит в цитоплазме клеток и не требует кислорода. В результате последовательных реакций с участием ферментов глюкоза распадается на две молекулы пировиноградной кислоты. При этом расходуются две молекулы АТФ, а высвобождающейся при окислении энергии достаточно для образования четырех молекул АТФ. В итоге энергетический выход гликолиза невелик и составляет две молекулы АТФ:

В анаэробных условиях (при отсутствии кислорода) дальнейшие превращения могут быть связаны с различными типами брожений.

Всем известно молочнокислое брожение (скисание молока), которое происходит благодаря деятельности молочнокислых грибков и бактерий. По механизму оно сходно с гликолизом, только окончательным продуктом здесь является молочная кислота. Этот тип окисления глюкозы происходит в клетках при дефиците кислорода, например в интенсивно работающих мышцах. Близко по химизму к молочнокислому и спиртовое брожение. Различие заключается в том, что продуктами спиртового брожения являются этиловый спирт и углекислый газ.

Следующий этап, в ходе которого пировиноградная кислота окисляется , до углекислого газа и воды, получил название клеточное дыхание. Связанные с дыханием реакции проходят в митохондриях растительных и животных клеток, и только при наличии кислорода. Это ряд химических превращений до образования конечного продукта — углекислого газа. На различных этапах такого процесса образуются промежуточные продукты окисления исходного вещества с отщеплением атомов водорода. При этом освобождается энергия, которая «консервируется» в химических связях АТФ, и образуются молекулы воды. Становится понятным, что именно для того, чтобы связать отщепленные атомы водорода, и требуется кислород. Данный ряд химических превращений достаточно сложный и происходит с участием внутренних мембран митохондрий, ферментов, белков-переносчиков.

Клеточное дыхание имеет очень высокую эффективность. Происходит синтез 30 молекул АТФ, еще две молекулы образуются при гликолизе, и шесть молекул АТФ — как результат превращений продуктов гликолиза на мембранах митохондрий. Всего в результате окисления одной молекулы глюкозы образуются 38 молекул АТФ:

В митохондриях происходят конечные этапы окисления не только сахаров, но также белков и липидов. Эти вещества используются клетками, главным образом когда подходит к концу запас углеводов. Вначале расходуется жир, при окислении которого выделяется существенно больше энергии, чем из равного объема углеводов и белков. Поэтому жир у животных представляет собой основной «стратегический резерв» энергетических ресурсов. У растений же роль энергетического резерва играет крахмал. При хранении он занимает значительно больше места, чем энергетически эквивалентное ему количество жира. Для растений это не служит помехой, поскольку они неподвижны и не носят, как животные, запасы на себе. Извлечь же энергию из углеводов можно гораздо быстрее, чем из жиров. Белки выполняют в организме многие важные функции, поэтому вовлекаются в энергетический обмен только при исчерпании ресурсов сахаров и жиров, например при длительном голодании.

ФОТОСИНТЕЗ. Фотосинтез — это процесс, в ходе которого энергия солнечных лучей преобразуется в энергию химических связей органических соединений. В растительных клетках связанные с фотосинтезом процессы протекают в хлоропластах. Внутри этой органеллы находятся системы мембран, в которые встроены пигменты, улавливающие лучистую энергию Солнца. Основной пигмент фотосинтеза — хлорофилл, который поглощает преимущественно синие и фиолетовые, а также красные лучи спектра. Зеленый свет при этом отражается, поэтому сам хлорофилл и содержащие его части растений кажутся зелеными.

В фотосинтезе выделяют две фазы — световую и темновую (рис. 53). Собственно улавливание и преобразование лучистой энергии происходит во время световой фазы. При поглощении квантов света хлорофилл переходит в возбужденное состояние и становится донором электронов. Его электроны передаются от одного белкового комплекса к другому по цепи переноса электронов. Белки этой цепи, как и пигменты, сосредоточены на внутренней мембране хлоропластов. При переходе электрона по цепи переносчиков он теряет энергию, которая используется для синтеза АТФ. Часть возбужденных светом электронов используется для восстановления НДФ (никотинамидадениндинуклеотифосфат), или НАДФ·Н.

Рис. 53. Продукты реакций световой и темновой фаз фотосинтеза

Под действием солнечного света в хлоропластах происходит также расщепление молекул воды — фотолиз; при этом возникают электроны, которые возмещают потери их хлорофиллом; в качестве побочного продукта при этом образуется кислород:

Таким образом, функциональный смысл световой фазы заключается в синтезе АТФ и НАДФ·Н путем преобразования световой энергии в химическую.

Для реализации темновой фазы фотосинтеза свет не нужен. Суть проходящих здесь процессов заключается в том, что полученные в световую фазу молекулы АТФ и НАДФ·Н используются в серии химических реакций, «фиксирующих» СОг в форме углеводов. Все реакции темновой фазы осуществляются внутри хлоропластов, а освобождающиеся при «фиксации» углекислоты АДФ и НАДФ вновь используются в реакциях световой фазы для синтеза АТФ и НАДФ·Н.

Суммарное уравнение фотосинтеза имеет следующий вид:

ВЗАИМОСВЯЗЬ И ЕДИНСТВО ПРОЦЕССОВ ПЛАСТИЧЕСКОГО И ЭНЕРГЕТИЧЕСКОГО ОБМЕНА. Процессы синтеза АТФ происходят в цитоплазме (гликолиз), в митохондриях (клеточное дыхание) и в хлоропластах (фотосинтез). Все осуществляющиеся в ходе этих процессов реакции — это реакции энергетического обмена. Запасенная в виде АТФ энергия расходуется в реакциях пластического обмена для производства необходимых для жизнедеятельности клетки белков, жиров, углеводов и нуклеиновых кислот. Заметим, что темновая фаза фотосинтеза — это цепь реакций , пластического обмена, а световая — энергетического.

Взаимосвязь и единство процессов энергетического и пластического обмена хорошо иллюстрирует следующее уравнение:

При чтении этого уравнения слева направо получается процесс окисления глюкозы до углекислого газа и воды в ходе гликолиза и клеточного дыхания, связанный с синтезом АТФ (энергетический обмен). Если же прочесть его справа налево, то получается описание реакций темновой фазы фотосинтеза, когда из воды и углекислоты при участии АТФ синтезируется глюкоза (пластический обмен).

Читайте также:  Генеративные органы растений в которых развиваются

ХЕМОСИНТЕЗ. К синтезу органических веществ из неорганических, кроме фотоавтотрофов, способны и некоторые бактерии (водородные, нитрифицирующие, серобактерии и др.). Они осуществляют этот синтез за счет энергии, выделяющейся при окислении неорганических веществ. Их называют хемоавтотрофами. Эти хемосинтезирующие бактерии играют важную роль в биосфере. Например, нитрифицирующие бактерии переводят недоступные для усвоения растениями соли аммония в соли азотной кислоты, которые хорошо ими усваиваются.

Клеточный метаболизм составляют реакции энергетического и пластического обмена. В ходе энергетического обмена происходит образование органических соединений с макроэргическими химическими связями — АТФ. Необходимая для этого энергия поступает от окисления органических соединений в ходе анаэробных (гликолиз, брожение) и аэробных (клеточное дыхание) реакций; от солнечных лучей, энергия которых усваивается на световой фазе (фотосинтез); от окисления неорганических соединений (хемосинтез). Энергия АТФ расходуется на синтез необходимых клетке органических соединений в ходе реакций пластического обмена, к которым относятся и реакции темновой фазы фотосинтеза.

  • В чем заключаются различия между пластическим и энергетическим обменом?
  • Как преобразуется энергия солнечных лучей в световую фазу фотосинтеза? Какие процессы проходят в темновую фазу фотосинтеза?
  • Почему фотосинтез называют процессом отражения планетно-космического взаимодействия?

Источник

Естествознание. 10 класс

Конспект урока

Конспект на интерактивный видео-урок

по предмету «Естествознание» для «10» класса

Урок № 24.Энергетика живой клетки

Перечень вопросов, рассматриваемых в теме:

  • Как энергия запасается в клетке;
  • Что такое метаболизм;
  • В чем суть процессов гликолиза, брожения и клеточного дыхания;
  • Какие процессы проходят на световой и темновой фазах фотосинтеза;
  • Как связаны процессы энергетического и пластического обмена;
  • Что представляет собой хемосинтез.

Глоссарий по теме:

Метаболизм (обмен веществ) — сложная цепь превращений веществ в организме начиная с момента их поступления из внешней среды и кончая удалением продуктов распада. Представляет собой совокупность процессов энергетического обмена (катаболизма диссимиляции) и пластического обмена (анаболизма, ассимиляции).

Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Синтезированная АТФ становится универсальным источником энергии для жизнедеятельности организмов. Значение энергетического обмена – снабжение клетки энергией, которая необходима для жизнедеятельности.

Пластический обмен – это совокупность химических реакций образования (синтеза) из простых веществ с затратой энергии более сложные. Непосредственным поставщиком энергии в клетках выступает АТФ.

Фотосинтез – процесс образования органических веществ из неорганических (углекислого газа и воды) с использованием солнечной энергии. Проходит в два этапа: световая фаза (происходит улавливание и фиксация энергии света в АТФ) и темновая (связывание углекислого газа в молекулы глюкозы с затратой энергии АТФ).

Хемосинтез — процесс образования органических веществ из неорганических (углекислого газа и воды) с использованием энергии окисления неорганических веществ. Например, такой тип питания используют азотфиксирующие бактерии.

Клеточное или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды.

Основная и дополнительная литература по теме урока :

Естествознание. 10 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд., испр. – М.: Просвещение, 2017.: с 115 — 118.

Обмен веществ. Портал открытая биология // Электронный доступ: https://biology.ru/textbook/content.html

Энергетика живой клетки. Научно-познавательный журнал «Познавайка» // Электронный доступ: http://www.poznavayka.org/biologiya/energiya-zhivoy-kletki/

Энергетика живой клетки. Журнал «В МИРЕ НАУКИ» №3, 2006 . БИОЛОГИЯ // электронный доступ: https://elementy.ru/nauchno-populyarnaya_biblioteka/430308/430310?SSL=1

Теоретический материал для самостоятельного изучения

Обязательным условием существования биологических систем являются потоки энергии. В этом заключается ключевое различие между живой и неживой природой. Энергия не хранится в клетке, а поступает извне. Ключевую роль в трансформации энергии обеспечивает клетка, как элементарная структура живого. Специальные биохимические механизмы трансформируют одни виды энергии в другие, для обеспечения необходимых функций клетки.

Основным источником энергии для всех живых существ планеты Земля, является энергия Солнца. Однако эта энергия может быть использована живым только после того, как она будет усвоена фотоавтотрофами (от греч. «фото» — свет, «авто» — сам, «трофос» — питание).

В процессе эволюции появились и другие организмы, которые научились потреблять готовые органические соединения для получения запасённой в них энергии – гетеротрофы (от греч. «гетерос» — другой, «трофос» — питание).

Некоторые виды микроорганизмов (хемоавтотрофы) приобрели способность к использованию энергии, выделяемой при окислении неорганических веществ.

Таким образом, из всего многообразия существующих форм энергии живые существа на нашей планете используют только две – световую и энергию химических связей.

Главный переносчик энергии в клетке

Световая энергия Солнца и энергия, заключённая в потребляемой пище, запасаются в особых бимолекулярных аккумуляторах – молекулах АТФ (аденозинтрифосфат). В молекулах АТФ энергия запасается в виде высокоэнергетических химических связях между остатками фосфорной кислоты, которая освобождается при отщеплении фосфата: АТФ → АДФ + Ф + E.

Выделяемая энергия используется клетками для процессов выработки тепла, мышечных сокращений (мышечная клетка), для проведения нервного импульса (нервные клетки) и т.п.

Обратный процесс образования АТФ с затратой энергии, получил название энергетический обмен.

Синтез макромолекул важнейших органических соединений, необходимых для построения структур клетки, обеспечения всех процессов жизнедеятельности клеток – пластический обмен — обеспечивается также энергией АТФ.

Независимо от типа питания, универсальным аккумулятором энергии живых организмов выступают молекулы АТФ, где добытая энергия извне запасается в виде химических связей. Такая схожесть иллюстрирует единство происхождения всего живого.

Поступившие вместе с пищей (или в результате фотосинтеза) органические вещества расщепляются на более простые (катаболизм или диссимиляция), которые служат для постройки макромолекул органических соединений (анаболизм или ассимиляция). Эти процессы происходят в организме одновременно. Совокупность этих процессов получила название – метаболизм. В результате его организм осуществляет обмен веществом и энергией с окружающей средой. Наибольшее значение для энергетического обмена являются многостадийные реакции расщепления глюкозы.

Читайте также:  Многообразие грибов и значение растений в жизни человека

На стадии гликолиза в цитоплазме клетки происходит ферментативное расщепление молекулы глюкозы с образованием более простой пировиноградной кислоты и молекул АТФ: С6Н12О6 + 2 АДФ + 2 Ф → 2С3Н4О3 + 4Н + + 2АТФ

Молекулы пировиноградной кислоты обладают значительной энергией, высвобождение которой происходит в митохондриях. В ходе так называемого клеточного дыхания (аэробного расщепления), вещество распадается на углекислый газ, который впоследствии выделяется из клетки и воду. По последним исследованиям, при этом образуется 30 молекул АТФ.

Суммарную реакцию окисления глюкозы можно представить следующим образом:

Некоторые микроорганизмы при недостатке кислорода расщепляют глюкозу в процессе анаэробного дыхания или брожения. В зависимости от конечных продуктов такого расцепления различают спиртовое брожение (с образование этанола), молочнокислое (молочная кислота). Последнее происходит и в мышцах, при недостатке кислорода, например во время длительной тренировки. Энергетический выход такого типа расщепления менее энергоэффективен.

Основным источником энергии для организмов является окисление глюкозы в митохондриях. При этом также может происходить окисление других органических соединений (белков, жиров), потребляемых, например, вместе с пищей.

Фотоавтотрофы имеют уникальные ферментативные системы, способные трансформировать энергию солнечного света в энергию химической связи. Процесс образования органических веществ из неорганических (углекислого газа и воды) с использованием солнечной энергии получил название фотосинтез. В растениях фотосинтезирующие комплексы сосредоточены в специальных органеллах – хлоропластах. Основной пигмент – хлорофилл – выполняет функцию световых «антенн», улавливая световые волны практически всех диапазонов, кроме зелёного. Стоит отметить, что это обуславливает окраску листьев растений.

В так называемой, световой фазе, кванты света выбивают электроны из молекулы хлорофилла, и он начинает передаваться по специальным белковым переносчикам, расположенных на мембране хлоропластов. Под действием света одновременно происходит разложение воды (фотолиз). В реакции высвобождается, в том числе катион водорода (Н + ), необходимый для последующего биосинтеза, который захватывает молекула НАДФ (никотинамидадениндинуклеотидфосфат): НАДФ + + Н + →НАДФ∙Н

Энергия возбуждённого электрона заряжает известный нам биологический катализатор АТФ и молекулу НАДФ – в этом заключается биологический смысл световой фазы фотосинтеза.

Заметим, что побочными продуктами фотолиза воды становятся свободный кислород и свободные электроны, восстанавливающие хлорофилл: 2Н2О→ Н + + 4е — + О2

Дальнейший процесс может уже проходить без света. Сущность реакций темновой фазы можно выразить следующим уравнением: СО2 + НАДФ∙Н + АТФ = С6Н12О6 +АДФ + НАДФ +

Не сложно заметить, что выделяются вещества необходимые на начальном этапе фотосинтеза, что замыкает цикл. Энергия молекулярных аккумуляторов была использована для фиксации углекислого газа в энергию химических связей углевода.

Фотосинтез, таким образом, является процессом превращения одной (световой) формы энергии в другую(химическую). Вся энергия биосферы запускается благодаря этому процессу. Другими словами, фотосинтез является отражением космических потоков энергии. Помимо этого, фотосинтезирующие организмы не только обеспечивают первичный синтез органических соединений, но и создают условия необходимые для существования других живых организмов.

Взаимосвязь энергетического и пластического обмена

Не сложно заметить, что процессы аккумулирования энергии в молекулах АТФ (энергетический обмен) и использование запасённой энергии для синтеза необходимых веществ (белков, жиров, углеводов, нуклеиновых кислот) неразрывно связаны. Так синтез АТФ не возможен без разложения органических веществ, а синтез веществ клетки не возможен без энергии АТФ. Причём, заметим, что и фотосинтез представляет собой единство этих процессов: темновая фаза – пластический обмен, световая фаза – энергетический.

Оба процесса протекают одновременно и неотделимы друг от друга, обеспечивая жизнедеятельность организма. Таким образом, в клетках происходит трансформация вещества и энергии, которые лежат в основе существования жизни и непрерывного самообновления. Сходство процессов энергетического обмена в клетках всех живых организмов является доказательством единства их происхождения.

В клетках происходят одновременно процессы энергетического и пластического обмена, это лежит в основе сохранения жизни. Взаимообмен энергией и веществом между живой и неживой природой является иллюстрацией принципа единства и взаимосвязи материального мира.

Примеры и разбор решения заданий тренировочного модуля:

Задание 1. Выберите один ответ:

  • Универсальным аккумулятором энергии в клетке является:
  • Жиры;
  • Белки;
  • АТФ;
  • НАДФ∙Н.

Пояснение: универсальной «разменной валютой» в энергетике живой клетки выступает АТФ. При его распаде выделяется энергия, которая расходуется на все жизненно важные процессы.

Задание 2. Исправьте ошибки, анализируя текст с позиции энергетического обмена:

В рационе питания человека помимо белков растительных и животных не обязательно должны присутствовать углеводы и жиры. Отсутствие жиров в пище не приводит к истощению. Человек толстеет, если употребляет в пищу избыточное количество углеводов. На сое и рисе можно прожить.

Ответ: В рационе питания человека помимо белков растительных и животных не обязательно должны присутствовать углеводы и жиры. Отсутствие жиров в пище не приводит к истощению. Человек толстеет, если употребляет в пищу много жиров. Исключительно на сое и рисе можно благополучно прожить.

Пояснение: с точки зрения энергетического обмена, наиболее энергоэффективными являются жиры. При этом, жиры, поступающие с пищей, используются в том числе, для построения многих важных соединений, например гормонов. «Быстрая» энергия углеводов в избыточном количестве может приводить к полноте. Употребление только растительного белка в пищу, по сравнению с животным, является менее энергоэффективным и при отсутствии других источников энергии может приводить к истощению организма.

Источник