Меню

Этапы фотосинтеза в листе растения

Строение листа. Фотосинтез листьев

В процессе эволюции у растений сформировались специфические структуры, которые обеспечивают процесс фотосинтеза. Основным органом фотосинтеза у высших растений является лист. Особенности строения этого органа позволяют осуществлять процесс поглощения солнечной энергии, преобразовывать ее в энергию органических соединений и обеспечивать автотрофный тип питания, который характерен для растительного организма.

В зависимости от способа фиксации углекислого газа существуют определенные различия в структурной организации листовой пластинки.

Большинство культурных растений средних широт имеют анатомическое строение, позволяющее осуществлять фиксацию углекислого газа за счет химических реакций цикла Кальвина (С3-путь).

Строения листа у растений, имеющих С3-путь фиксации углекислого газа

Функции тканей листа в процессе фотосинтеза

Эпидермис состоит из живых клеток различной формы, не способных к ассимиляции углекислого газа (кроме клеток устьиц), имеет особенности в строении клеточных стенок (наличие кутикулы, состоящей главным образом из кутина, часто кутиновый слой покрыт сверху сложной смесью восков, волосками). Защищает лист от неблагоприятных факторов внешней среды, регулирует поток квантов света (способствуют различные структурные компоненты эпидермиса — восковой налет, волоски, выросты), за счет расположенных в эпидермисе устьиц обеспечивается поглощение СО2 и выделение О2 .

Мезофилл листа состоит из клеток двух типов, которые образуют столбчатую (полисадную) и губчатую паренхиму.

Столбчатая паренхима находится под эпидермисом, обращена к свету, содержит большую часть хлоропластов листа, выполняет основную работу в процессе поглощения квантов света и ассимиляции СО2.

Губчатая паренхима обладает обширной системой межклетников и большой поверхностью влажных клеточных стенок, способствует накоплению СО2 в мезофилле листа за счет химических реакций, которые идут в межклеточном пространстве:

ион НСО3 — является резервом углекислого газа и обеспечивает его приток в клетки мезофилла листа.

Проводящие пучки состоят из ксилемы, флоэмы и механической ткани (склеренхима, колленхима), образуют сложную разветвленную систему в мезофилле листа.

Ксилема состоит из мертвых вытянутых клеток с утолщенными клеточными стенками. Главными клетками являются элементы сосудов. Зрелые элементы имеют сильно лигнифицированные боковые стенки, на их внутренней стороне имеются вторичные утолщения. Лигнин образует обширную плотную трехмерную сетку. Торцевые участки стенок почти полностью исчезают, что приводит к объединению элементов, расположенных последовательно, в длинные трубки-сосуды

Ксилема обеспечивает приток воды и минеральных солей, необходимых для метаболических процессов тканей листа, за счет боковых стенок она выполняет также опорную и механическую функции.

Флоэма состоит из ситовидных трубок и паренхимных клеток

Зрелые структурные элементы ситовидных трубок являются живыми клетками, которые сообщаются между собой через отверстия в торцевых участках их стенок (через ситовидные пластинки)

В процессе образования ситовидные трубки утрачивают ядро и большую часть цитоплазмы, функцию их жизнеобеспечения берут на себя клетки-спутники, которые прилегают к ситовидным трубкам и сообщаются с ними через поры ситовидных полей – перфорированные участки на боковой поверхности клеточной стенки. Флоэма обеспечивает отток ассимилянтов (продуктов фотосинтеза) из листа в другие органы растений.

Механическая ткань (представлена в виде склеренхимы и колленхимы — главным образом в больших жилках )

Колленхима образована живыми клетками, которые имеют вытянутую форму и неравномерно утолщенную клеточную стенку

Склеренхима состоит из мертвых клеток с лигнифицированной толстой вторичной клеточной стенкой. В листьях клетки склеренхимы имеют вытянутую форму в виде волокон и образуют пучки

Колленхима и склеренхима придают листьям прочность и выполняют опорную функцию.

Строения листа у растений, имеющих С4-путь фиксации углекислого газа

Для ряда растений, осуществляющих процесс фиксации углекислого газа путем Хэтча-Слэка (С4-путь), характерно особое анатомическое строение листа. У С4-растений проводящие пучки окружены двойным слоем клеток – ײкранц-анатомияײ (от немецкого — корона, венец).

Первый слой клетки обкладки сосудистого пучка содержат крупные (часто без гран) хлоропласты . В хлоропластах функционируют ферменты цикла Кальвина-Бенсона, этот слой обеспечивает накопление крахмала.

Второй слойклетки мезофилла листа, содержат хлоропласты обычного вид . Этот вид хлоропластов активно осуществляет процесс световой фазы фотосинтеза и фиксацию углекислого газа с помощью ФЕП-карбоксилазы, создает высокое соотношение СО22.

Хлоропласты – органеллы фотосинтеза

Одним из основных этапов в эволюции автотрофных организмов было возникновение особых клеточных органелл — хлоропластов. Основываясь на биохимических данных, полагают, что хлоропласты – это потомки цианобактерий, которые захватились некоторыми эукариотичными клетками путем эндоцитоза и перешли к симбиозу с ними.

Хлоропласты — овальные тельца (длина 5-10 мкм, ширина 2-3 мкм ограничены двумя мембранами.

Наружная мембрана придает хлоропластам оптимальную для поглощения света форму (в виде линзы), регулирует транспорт веществ из органеллы в цитоплазму и из цитоплазмы в органеллу, участвует в образовании особого компартмента – межмембранного пространства

Внутренняя мембрана ограничивает внутренний компартмент органеллы, участвует в транспорте веществ.

Читайте также:  Сажаем растения по лунному календарю

Тилакоидная мембрана образуется из внутренней мембраны, увеличивает внутреннюю поверхность, формирует тилакоиды (тилакоиды собраны в стопки, которые называются гранами) и внутритилакоидный компартмент органеллы , содержит пигменты и ферменты, обеспечивающие световую фазу фотосинтеза.

Стромабесцветная гомогенная среда, содержит ферменты темновой фазы фотосинтеза, зерна крахмала, кольцеобразную молекулу ДНК, рибосомы и все ферменты, обеспечивающие биосинтез белков и полуавтономность хлоропластов.

Хлоропласты с помощью мембран разделены на различные компартменты, в которых содержатся специфические ферменты и создается определенная среда. Такое строение позволяет осуществлять сложный процесс фотосинтеза, состоящий из двух фаз – световой и темновой.

Автор: Татьяна Самойленко ( Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript )
Опубликовано — 30 декабря 2010 г.

Источник

Этапы фотосинтеза

Фотосинтез — это сложный многоступенчатый окислительно-восстановительный процесс, в котором происходит восстановление углекислого газа до уровня углеводов и окисление воды до кислорода. Фотосинтез включает как световые, так и темновые реакции. Был проведен ряд экспериментов, доказывающих, что в процессе фотосинтеза происходят не только реакции, идущие с использованием энергии света, но и темновые, не требующие непосредственного участия энергии света. Можно привести следующие доказательства существования темновых реакций в процессе фотосинтеза:

1) фотосинтез ускоряется с повышением температуры. Отсюда прямо следует, что какие-то этапы этого процесса непосредственно не связаны с использованием энергии света. Особенно резко зависимость фотосинтеза от температуры проявляется при высоких интенсивностях света. По-видимому, в этом случае скорость фотосинтеза лимитируется именно темновыми реакциями;

2) эффективность использования энергии света в процессе фотосинтеза оказалась выше при прерывистом освещении. При этом для более эффективного использования энергии света длительность темновых промежутков должна значительно превышать длительность световых.

В 1932 г. Эмерсону удалось непосредственно измерить продолжительность световых и темновых реакций фотосинтеза. Оказалось, что скорость световой реакции составляет 10 -5 с и не зависит от температуры, тогда как скорость темновой значительно меньше и в зависимости от температуры изменяется от 4 х 10 -1 до 4 х 10 -2 с. Процесс фотосинтеза включает следующие этапы:

Источник

Процесс фотосинтеза в листьях растений

Осуществляется процесс фотосинтеза в листьях растений. Фотосинтез свойствен лишь зеленым растениям. Эту важнейшую сторону деятельности листа полнее всего характеризует К. А. Тимирязев:

Можно сказать, что в жизни листа выражается самая сущность растительной жизни. Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались — в растении ли, в животном или в человеке, — прошли через лист, произошли из веществ, выработанных листом.

Строение листьев растений

Листья растений по анатомическому строению отличаются большим разнообразием, которое зависит и от вида растения, и от условий их роста. Лист сверху и снизу покрыт эпидермисом — покровной тканью с многочисленными отверстиями, называемыми устьицами. Под верхним эпидермисом расположена палисадная, или столбчатая паренхима, называемая ассимиляционной. Под ней находится более рыхлая ткань — губчатая паренхима, за которой идет нижний эпидермис. Весь лист пронизан сетью жилок, состоящих из проводящих пучков, по которым проходят вода, минеральные и органические вещества.

Поперечный разрез листа

В столбчатой и губчатой ткани листа расположены зеленые пластиды — хлоропласты, содержащие пигменты. Наличием хлоропластов и содержащихся в них зеленых пигментов (хлорофиллов) объясняется окраска растений. Огромная листовая поверхность, достигающая 30 000 — 50 000 кв. м на 1 га у разных растений, хорошо приспособлена для успешного поглощения СО2из воздуха в процессе фотосинтеза. Углекислый газ проникает в лист растения через устьица, расположенные в эпидермисе, поступает в межклетники и, проникая через оболочку клеток, попадает в цитоплазму, а затем в хлоропласты, где и осуществляется процесс ассимиляции. Образующийся в этом процессе кислород диффундирует с поверхности хлоропластов в свободном состоянии.

Таким образом, через устьица осуществляется газообмен листьев с внешней средой — поступление углекислого газа и выделение кислорода в процессе фотосинтеза, выделение углекислого газа и поглощение кислорода в процессе дыхания. Кроме того, устьица служат для выделения паров воды. Несмотря на то, что общая площадь устьичных отверстий составляет лишь 1—2% всей листовой поверхности, тем не менее при открытых устьицах углекислый газ проникает в листья со скоростью, превышающей в 50 раз поглощение его щелочью. Количество устьиц очень велико — от нескольких десятков до 1500 на 1 кв. мм.

Хлоропласты

Хлоропласты — зеленые пластиды, в которых происходит процесс фотосинтеза. Они расположены в цитоплазме. У высших растений хлоропласты имеют дискообразную или линзовидную форму, у низших они более разнообразны.

Хлоропласты в клетках зеленых растений

Размер хлоропластов у высших растений довольно постоянен, составляя в среднем 1 —10 мк. Обычно в клетке содержится большое количество хлоропластов, в среднем 20—50, а иногда и больше. Расположены они главным образом в листьях, много их в незрелых плодах. В растении общее количество хлоропластов огромно; во взрослом дереве дуба, например, площадь их равняется 2 га. Хлоропласт имеет мембранную структуру. От цитоплазмы он отделен двухмембранной оболочкой.

Читайте также:  Растения которые зимуют с зелеными листьями

В хлоропласте находятся ламеллы, белково-липоидные пластинки, собранные в пучки и называемые гранами. Хлорофилл расположен в ламеллах в виде мономолекулярного слоя. Между ламеллами находится водянистая белковая жидкость — строма; в ней встречаются крахмальные зерна и капли масла.

Строение хлоропласта хорошо приспособлено к фотосинтезу, так как разделение хлорофиллоносного аппарата на мелкие пластинки значительно увеличивает активную поверхность хлоропласта, что облегчает доступ энергии и перенос ее к химическим системам, участвующим в фотосинтезе. Данные А. А. Табенцкого показывают, что хлоропласты все время изменяются в онтогенезе растения. В молодых листьях наблюдается мелкогранулярная структура хлоропластов, в листьях, закончивших рост,— крупногранулярная. В старых листьях уже наблюдается распад хлоропластов. В сухом веществе хлоропластов содержится 20—45% белков, 20—40% липоидов, 10—12% углеводов и других запасных веществ, 10% минеральных элементов, 5—10% зеленых пигментов (хлорофилл а и хлорофилл б), 1—2% каротиноидов, а также небольшое количество РНК и ДНК. Содержание воды достигает 75%. В хлоропластах имеется большой набор гидролитических и окислительно-восстановительных ферментов.

Исследованиями Н. М. Сисакяна показано, что в хлоропластах происходит и синтез многих ферментов. Благодаря этому они принимают участие во всем сложном комплексе процессов жизнедеятельности растения.

Пигменты, их свойства и условия образования

Пигменты можно извлечь из листьев растений спиртом или ацетоном. В вытяжке находятся следующие пигменты: зеленые — хлорофилл а и хлорофилл б; желтые — каротин и ксантофилл (каротиноиды).

Хлорофилл

Хлорофилл представляет собой

одно из интереснейших веществ на земной поверхности

так как благодаря ему возможен синтез органических веществ из неорганических СО2 и Н2О. Хлорофилл не растворяется в воде, под влиянием солей, кислот и щелочей легко изменяется, поэтому было очень трудно установить его химический состав. Для извлечения хлорофилла обычно применяют этиловый спирт или ацетон. Хлорофилл имеет следующие суммарные формулы: хлорофилл а — С55Н72О5N4Mg, хлорофилл б — С55Н70О6N4Mg. У хлорофилла а больше на 2 атома водорода и меньше на 1 атом кислорода, чем у хлорофилла б. Формулы хлорофилла можно представить и так:

Формулы хлорофилла а и б.

Центральное место в молекуле хлорофилла занимает Мg; его можно вытеснить, подействовав на спиртовую вытяжку хлорофилла соляной кислотой. Зеленый пигмент превращается в бурый, называемый феофитином, в котором Мg замещается двумя атомами Н из соляной кислоты. Восстановить зеленый цвет вытяжки очень легко внесением в молекулу феофитина магния или другого металла. Следовательно, зеленый цвет хлорофилла связан с наличием в его составе металла. При воздействии на спиртовую вытяжку хлорофилла щелочью происходит отщепление спиртовых групп (фитола и метилового спирта); в этом случае зеленая окраска хлорофилла сохраняется, что указывает на сохранение ядра молекулы хлорофилла при этой реакции. Химический состав хлорофилла у всех растений одинаков.

Содержание хлорофилла а всегда больше (примерно в 3 раза), чем хлорофилла б. Общее количество хлорофилла невелико и составляет около 1 % от сухого вещества листа. По своей химической природе хлорофилл близок к красящему веществу крови — гемоглобину, центральное место в молекуле которого занимает не магний, а железо. В соответствии с этим различаются и их физиологические функции: хлорофилл принимает участие в важнейшем восстановительном процессе в растении — фотосинтезе, а гемоглобин — в процессе дыхания животных организмов, перенося кислород.

Оптические свойства пигментов

Хлорофилл поглощает солнечную энергию и направляет ее на химические реакции, которые не могут протекать без энергии, получаемой извне. Раствор хлорофилла в проходящем свете имеет зеленый цвет, но при увеличении толщины слоя или концентрации хлорофилла он приобретает красный цвет. Хлорофилл поглощает свет не сплошь, а избирательно. При пропускании белого света через призму получается спектр, состоящий из семи видимых цветов, которые постепенно переходят друг в друга. При пропускании белого света через призму и раствор хлорофилла на полученном спектре наиболее интенсивное поглощение будет в красных и сине-фиолетовых лучах.

Зеленые лучи поглощаются мало, поэтому в тонком слое хлорофилл имеет в проходящем свете зеленый цвет. Однако с увеличением концентрации хлорофилла полосы поглощения расширяются (значительная часть зеленых лучей также поглощается) и без поглощения проходит только часть крайних красных. Спектры поглощения хлорофилла а и бочень близки. В отраженном свете хлорофилл кажется вишнево-красным, так как он излучает поглощенный свет с изменением длины его волны. Это свойство хлорофилла называется флюоресценцией.

Читайте также:  Алгоритм посадки растений для дошкольников

Каротин и ксантофилл

Каротин и ксантофилл имеют полосы поглощения только в синих и фиолетовых лучах. Их спектры близки друг другу. Спектры поглощения хлорофиллом а и б. Поглощенная этими пигментами энергия передается хлорофиллу а, который является непосредственным участником фотосинтеза. Каротин считают провитамином А, так как при его расщеплении образуются 2 молекулы витамина А. Формула каротина — С40Н56, ксантофилла — С40Н54(ОН)2.

Условия образования хлорофилла

Образование хлорофиллаосуществляется в 2 фазы: первая фаза — темновая, во время которой образуется предшественник хлорофилла — протохлорофилл, а вторая — световая, при которой из протохлорофилла на свету образуется хлорофилл.

Образование хлорофилла зависит как от вида растения, так и от ряда внешних условий. Некоторые растения, например проростки хвойных, могут позеленеть и без участия света, в темноте, но у большинства растений хлорофилл образуется из протохлорофилла только на свету.

В отсутствие света получаются этиолированные растения, имеющие тонкий, слабый, сильно вытянутый стебель и очень мелкие бледно-желтые листья. Если выставить этиолированные растения на свет, то листья быстро позеленеют. Это объясняется тем, что в листьях уже имеется протохлорофилл, который под воздействием света легко превращается в хлорофилл.

Большое влияние на образование хлорофилла оказывает температура; при холодной весне у некоторых кустарников листья не зеленеют до установления теплой погоды: при понижении температуры подавляется образование протохлорофилла. Минимальной температурой, при которой начинается образование хлорофилла, является 2°, максимальной, при которой образование хлорофилла не происходит, 40°.

Кроме определенной температуры, для образования хлорофилла необходимы элементы минерального питания, особенно железо. При его отсутствии у растений наблюдается заболевание, называемое хлорозом. По-видимому, железо является катализатором при синтезе протохлорофилла, так как в состав молекулы хлорофилла оно не входит. Для образования хлорофилла также необходимы азот и магний, входящие в состав его молекулы. Важным условием является и наличие в клетках листа пластид, способных к позеленению. При их отсутствии листья растений остаются белыми, растение не способно к фотосинтезу и может жить только до тех пор, пока не израсходует запасы семени. Это явление называется . Оно связано с изменением наследственной природы данного растения.

Количественные отношения между хлорофиллом и усваиваемой углекислотой

При большем содержании хлорофилла в растении процесс фотосинтеза начинается при меньшей интенсивности света и даже при более низкой температуре. С увеличением содержания хлорофилла в листьях фотосинтез возрастает, но до известного предела. Следовательно, нет прямой зависимости между содержанием хлорофилла и интенсивностью поглощения СО2. Количество ассимилированного листом СО2 в час в пересчете на единицу содержащегося в листе хлорофилла тем выше, чем меньше хлорофилла.

Р. Вильштеттером и А. Штолем была предложена единица, характеризующая соотношение между количеством хлорофилла и поглощенным углекислым газом. Количество разложенной в единицу времени углекислоты, приходящееся на единицу веса хлорофилла, они назвали ассимиляционным числом. Ассимиляционное число непостоянно: оно больше при малом содержании хлорофилла и меньше при высоком содержании его в листьях. Следовательно, молекула хлорофилла используется более продуктивно при низком его содержании в листе и продуктивность хлорофилла уменьшается с увеличением его количества. Данные введены в таблицу.

Таблица «Ассимиляционное число в зависимости от содержания хлорофилла (по Р. Вильштеттеру и А. Штолю)»

в 10г. листьев (мг)

Из данных таблицы видно, что нет прямой зависимости между содержанием хлорофилла и количеством поглощенной СО2. Хлорофилл в растениях всегда содержится в избытке и, очевидно, не весь участвует в фотосинтезе. Это объясняется тем, что при фотосинтезе наряду с процессами фотохимическими, которые осуществляются при участии хлорофилла, есть процессы чисто химические, которым свет не нужен. Темновые реакции в растениях протекают значительно медленнее, чем световые. Скорость световой реакции равна 0,00001 секунды, темновой — 0,04 секунды.

Впервые темновые реакции в процессе фотосинтеза обнаружены Ф. Блэкманом. Он установил, что темновая реакция зависит от температуры, и с повышением ее скорость темновых процессов увеличивается. Длительность световых реакций ничтожна, поэтому скорость процесса фотосинтеза определяется главным образом продолжительностью темновых процессов. Иногда при благоприятных для фотосинтеза условиях (достаточное количество хлорофилла и света) он протекает медленно. Это объясняется тем, что продукты, образующиеся при фотохимических реакциях, не успевают перерабатываться при темновых. Малое количество хлорофилла позволяет всем образующимся продуктам в фотохимической реакции быстро и полностью перерабатываться при темновой реакции.

Источник

Растения 6,9 82,0
Сирень 16,2 5,8
Этиолированные проростки фасоли после освещения в течение: 6 часов 4 дней