Меню

Этапы развития зародыша семян растений

Этапы развития зародыша семян растений

Wikimedia Foundation . 2010 .

Смотреть что такое «Зародыш (ботаника)» в других словарях:

Зародыш — Зародыш: Зародыш животных эмбрион Зародыш растений зародыш (ботаника) Список значений слова или словосочетания со ссылками на … Википедия

Ботаника — отрасль естествознания, исследующая растения; название ее происходит от греческого слова βοτάνη трава, и должно бы переводиться травоведение . Занимаясь распознаванием и классификацией всех растительных форм, уяснением их взаимного сродства,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Семя (ботаника) — Вверху: семя клёна белого (Acer pseudoplatanus) … Википедия

Эмбрион (ботаника) — Вверху: зародыш на срезе семени гинкго двулопастного (Ginkgo biloba) … Википедия

Семя — У этого термина существуют и другие значения, см. Семя (значения) … Википедия

Семена — Вверху: семя клёна белого (Acer pseudoplatanus) … Википедия

Семя (ботан.) — Вверху: семя клёна белого (Acer pseudoplatanus) … Википедия

Карпология — Раздел ботаники Карпология Объекты исследования … Википедия

Эмбриология растений — наука о путях зарождения и формировании нового растительного организма. В более широком смысле Э. р. изучает не только собственно зародышевое развитие, но и период формирования генеративной сферы, образование в ней половых клеток и… … Большая советская энциклопедия

БИОЛОГИЯ — БИОЛОГИЯ. Содержание: I. История биологии. 424 Витализм и машинизм. Возникновение эмпирических наук в XVI XVIII вв. Возникновение и развитие эволюционной теории. Развитие физиологии в XIX в. Развитие клеточного учения. Итоги XIX века … Большая медицинская энциклопедия

Источник

Биология в лицее

Сайт учителей биологии МБОУ Лицей № 2 г. Воронежа, РФ

Site biology teachers lyceum № 2 Voronezh city, Russian Federation

Семя, наверное, самый маленький орган растения, но именно ради образования семени растения цветут и образуют плоды. Из маленького семени вырастают могучие дубы и яркие астры, вкусные арбузы и горькая полынь. Насколько разнообразны растения на Земле, настолько же многообразны и их семена. Однако общий план строения и функции, которые семена выполняют, у всех видов одинаковы.

Семена цветковых растений

Среди семенных растений цветковые растения – наиболее развитые и сложные по строению и размножению представители царства растений. Они размножаются семенами и расселяются по Земле с помощью семян. С семени цветковое растение начинает свою жизнь.

Попав в благоприятные условия, семя прорастает. При этом из семени вначале появляется корень, затем маленький побег. Такое молодое растеньице называют проростком. Спустя некоторое время у него развиваются облиственные побеги, а позже цветки, плоды и семена. Иначе говоря, из семени вырастает новое растение, очень похожее на материнское. Семя считают органом полового размножения растения.

Семя – орган полового размножения и расселения растений.

У одних растений семенная кожура плотная, но тонкая, у других она деревянистая, толстая и очень твердая (у сливы, миндаля, винограда и др.).

На кожуре есть рубчик – след от места прикрепления семени к стенке плода. Рядом с рубчиком находится маленькое отверстие – семявход. Через семявход внутрь семени проникает вода, после чего семя набухает и прорастает.

Кожуру трудно снять с сухого семени. Но когда оно наберет через семявход воду и набухнет, кожура лопнет, ее легко снять, и тогда обнаружится внутреннее строение семени. Внутри семени под кожурой находится зародыш – маленькое новое растение.

Эндосперм – запасающая ткань семени.

Эндосперм представлен крупными клетками, целиком заполненными питательными веществами в виде крахмала, белков и различных масел. Все эти вещества служат зародышу первым источником питания при прорастании семени.

Зародыш нового растения в семени имеет две хорошо различимые части: зародышевый побег и зародышевый корень.

Зародышевый побег представлен зародышевым стеблем, семядолями (первые листья) и зародышевой почкой. Например, у фасоли, тыквы, яблони и огурца в зародыше всегда имеются две крупные мясистые семядоли, а у пшеницы, кукурузы, тюльпана и ландыша – только одна семядоля.

Цветковые растения, имеющие зародыш семени с одной семядолей, называют однодольными , а с двумя – двудольными .

Семена однодольных и двудольных растений, получив через семявход воду, набухают и прорастают. При этом через разрывы кожуры из семени выходит сначала зародышевый корень. Он быстро растет вниз, опережая рост других органов зародыша, и закрепляет молодое растеньице в почве. Затем начинает расти вверх зародышевый побег. Его стеблевая часть удлиняется и выносит вверх семядоли и верхушечную почку. Из нее затем развивается надземный побег с настоящими зелеными листьями. При прорастании семени появляется молодое растеньице – проросток. От воды набухают все семена – и живые, и неживые, потерявшие всхожесть.

Проросток вырастает только из семян с живым зародышем.

Проросток любого семенного растения состоит из главного корня и главного побега. Их называют главными потому, что они развились из зародышевого корешка и зародышевого побега.

Позднее главный корень ветвится. Совокупность всех корней растения называют корневой системой (система – целое, состоящее из взаимосвязанных частей).

Аудиофрагмент «Семя» (1:42)

Интерактивный урок-тренажёр. (Выполните все задания урока)

Семена имеют кожуру, зародыш и многие – эндосперм. Зародыш состоит из зародышевого корня и зародышевого побега-стебля с двумя семядолями и верхушечной почкой (у двудольных) или с одной семядолей и верхушечной почкой (у однодольных). При поступлении воды в живое семя оно набухает и прорастает. Тело проростка состоит из главного корня и главного побега.

Читайте также:  Соблюдение требований законодательства в сфере карантина растений

Источник

развитие зародыша

Деление зиготы обычно начинается несколько позднее деления первичного ядра эндосперма. Зигота проходит как бы некоторый период покоя, который может быть более или менее продолжительным. Замечено, что у эндосперма, развивающегося по целлюлярному типу, период покоя менее продолжительный, чем у нуклеарного эндосперма.

За одним лишь исключением: рода пион развитие зародыша цветковых растений отличается от развития зародыша голосеменных тем, что первое же деление ядра зиготы сопровождается образованием клеточной оболочки (у голосеменных, как известно, первоначально образуются свободные ядра, что среди цветковых наблюдалось пока только у пиона).

Развитие зародыша начинается с того, что зигота вытягивается в длину и делится перегородкой поперек. Таким образом возникает предзародыш (проэмбрио), внутренняя клетка которого, делясь, дает начало зародышу, а наружная, или основная, клетка развивает подвесок, или суспензор (от лат. suspensus — подвешенный). Этот последний содействует питанию развивающегося зародыша, погружая его в эндосперм, а нередко даже приобретает свойства гаустория (присоска).

Зародыш у большинства .цветковых растений состоит из корешка (радикулы), стебелька, семядолей и почечки (плюмулы). Стебелек, или подсемядольное колено (гипокотиль), переходит внизу в корешок (зародышевый корень), предетавляющий собой зачаток главного корня. Иногда имеются также зачатки придаточных корней. Вверху стебелька находятся семядоли, или зародышевые листья. У двудольных обычно имеются две семядоли, очень редко 3 или 4, у однодольных только одна. Лучше всего развиты семядоли в семенах без эндосперма, например в семенах бобов или фасоли, где в них откладываются запасные вещества. На самой верхушке стебелька расположена почечка, из которой впоследствии развивается первичный побег.

Таково строение нормально-расчлененного зародыша большинства цветковых растений. Однако у некоторых родов и даже семейств имеются слабо расчлененные или даже вовсе не расчлененные зародыши. У некоторых растений зародыш настолько упростился, что сведен к шарообразной или эллипсоидальной клеточной массе, в которой нет даже намека на зачатки корешка, стебелька и семядоли. Подобный редуцированный нерасчлененный зародыш наблюдается у таких, несомненно, очень специализированных сапрофитных и паразитных растений, как раффлезиевые, гидноровые, грушанка и монотрона, баланофоровые, повилика, заразиховые, бурманниевые, орхидные, а также у некоторых зеленых автотрофных растений, например у чистяка (Ranunculus ficaria) из семейства лютиковых.

Как известно, два класса цветковых растений — двудольные и однодольные — наряду с целым рядом других признаков отличаются друг от друга числом семядолей. У двудольных, как правило, две семядоли, у однодольных — одна. С двудольным зародышем мы встречаемся не впервые — он имеется у многих голосеменных. Но одна — единственная семядоля — это особенность только класса однодольных и ни в одной другой группе семейных растений не встречается. Имеются все основания считать, что однодольный зародыш произошел из двудольного. Но как можно себе представить превращение двудольного зародыша в однодольный? Этот вопрос вызвал очень много разногласий и породил довольно большое число гипотез. Но мы здесь имеем возможность изложить только одну из них, а .именно так называемую гипотезу недоразвития, которая представляется самой правдоподобной и, кстати, приобрела наибольшее число сторонников.

Более ста лет назад известный немецкий ботаник Ф. Хегельмайер (1874, 1878), основываясь на сравнительном изучении зародышей различных двудольных и однодольных, пришел к выводу, что однодольный зародыш произошел из двудольного в результате недоразвития одной семядоли. На первый взгляд этому противоречит терминальное (верхушечное) положение единственной семядоли однодольных. Если положение единственной семядоли истинно терминальное, то тогда действительно трудно себе представить, каким образом недоразвитие одной из двух симметрично расположенных боковых семядолей двудольных привело к образованию однодольного зародыша. Но уже Хегельмайер с полным основанием рассматривал верхушечное расположение единственной семядоли однодольных как результат смещения, т. е. сдвига в процессе развития. Последующие исследования (в середине XX в. и позднее) убедительно показали, что терминальное положение семядоли однодольных только кажущееся и является результатом смещения верхушечной меристемы интенсивно растущей семядолей, занимающей, в свою очередь, псевдотерминальное положение. При этом, как выясняется, и сама степень терминальности у разных однодольных различна. У некоторых однодольных, по-видимому, сохранилась редуцированная вторая семядоля.

Все это приводит к выводу, что однодольный зародыш произошел в результате подавления или утери одной из двух семядолей, что возвращает нас, хотя и на новом уровне, к старой гипотезе Хегельмайера. Интересно, что подавление одной из двух семядолей происходит у самых разных представителей двудольных. У некоторых видов и даже целых родов нормально развивается лишь одна семядоля, как, папример, у упомянутого выше чистяка, а также у пеперомии, некоторых видов хохлатки, шишника, цикламена, некоторых геснериевых и др. Вторая семядоля бывает у них рудиментарной и способной к развитию (цикламен) или совершенно подавленной (чистяк, шишник и др.). Эти факты важны в том отношении, что они показывают реальность самого явлении недоразвития одной из двух семядолей.

Читайте также:  Таблица основные признаки живых организмов растения животные

Источник

Как зарождается жизнь, или Что происходит в семени

Автор
Редактор

Любой организм развивается только из одной клетки, но рождается многоклеточным. Как же сложно и закономерно делится эта клетка, что в итоге все живые организмы не похожи друг на друга! Что за закономерности приводят к правильному развитию животных, уже изучено достаточно подробно, а какова логика в случае растений?

Эмбриологию (учение о зародыше: εμβρυον — эмбрион, зародыш — плюс — λογια, от λογος — учение) теперь всё чаще называют биологией развития. Такое изменение неслучайно: все живые организмы развиваются из одной клетки, и благодаря современным методам мы можем проследить весь этот путь, то есть изучить не только зародыш, но и то, как он развился из зиготы — клетки, возникающей при оплодотворении яйцеклетки сперматозоидом. Скоординированная регуляция экспрессии тысяч генов из-за создающихся градиентов определенных веществ для животных описана довольно хорошо: например, о модели создания этих градиентов в процессе развития конечностей рассказывала моя коллега Дарья Сергеева [1, 2]. Я же расскажу вам про развитие растений.

Орган размножения растений — цветок. Яркие лепестки венчика служат для привлечения опылителей, и, конечно, со школы все помнят, что есть пестики и тычинки (а зачем они — помнят уже немногие). В пестике — зародышевый мешок, в тычинке — пыльца. Пыльца, прорастая через пестик к зародышевому мешку, оплодотворяет яйцеклетку, и получается зигота, из которой развивается зародыш (рис. 1). Подобно птицам и рептилиям, эмбрион которых развивается под оболочками яйца, зародыш растения развивается под оболочками семени.

Рисунок 1. Закон зародышевого сходства Карла Бэра гласит, что ранние стадии эмбрионального развития животных похожи. А как насчет растений? Рисунок с сайта pixshark.com.

Первое деление зиготы растений уже говорит о том, что нас ждет что-то необычное, ведь оно несимметричное. Второе деление в верхней и нижней клетке происходит в разных плоскостях. В верхней клетке — вертикально, в нижней — горизонтально. По прошествии еще нескольких делений зародыш превращается в «шарик на ножке» — глобулярная стадия. Эта ножка — суспензор — связывает зародыш с материнским растением, подобно пуповине млекопитающих, питая его. Между суспензором и глобулой есть одна чрезвычайно важная клетка — гипофиза, — из которой развивается апикальная меристема корня (рис. 2).

Рисунок 2. Стадии развития зародыша растений: октант, глобула, сердце, торпеда и зрелый зародыш. Разными цветами показаны области зародыша, из которых разовьются разные ткани. В этой статье речь пойдет главным образом о развитии апикальной меристемы побега (shoot apical meristem, SAM), показанной на рисунке красным цветом, и апикальной меристемы корня (root apical meristem, RAM), показанной фиолетовым. Рисунок с сайта www.mun.ca.

«Апикальная» значит «верхушечная» (от лат. apex — верхушка). Так случилось, что у растений две верхушки: одна растет вверх — побег, а другая вниз — корень. Поэтому меристема корня тоже называется апикальной (хотя правильнее было бы назвать ее базальной (от греч. basis — основа)). Меристема, или образовательный центр, — одна из самых важных частей растения: именно от меристематических клеток берут свое начало все остальные. Меристемы побега и корня имеют сходное строение: в них выделяют покоящийся центр, клетки которого редко делятся, но сигнализируют остальным клеткам меристемы оставаться недифференцированными, то есть не вытягиваться и не становиться клеткой сосуда, не накапливать хлорофилл, превращаясь в клетку листа, а сохраняться в эмбриональном виде.

Как у всех живых организмов, функционирование клеток зависит от того, начнут ли работать определенные гены или нет, что в свою очередь определяется наличием транскрипционного фактора и его способностью запустить работу гена. Апикальную меристему побега регулирует транскрипционный фактор WUSCHEL (WUS), а апикальную меристему корня WUSCHEL-RELATED HOMEOBOX 5 (WOX5).

Диким типом (wild type, WT) считается нормальное растение, то есть растение с работающей доминантной аллелью гена. Обычно названия таких генов пишут наклонными прописными буквами, а белков — продуктов этих генов просто прописными. Например, ген WOX5 кодирует белок WOX5.

Мутантным (mutant, mut) принято называть растение с неработающим по разным причинам гéном: либо это мутация в самόм гене, тогда он называется рецессивным (хотя бывают и доминантные мутации), либо блокируется синтез белка — продукта этого гена, например, на уровне мРНК РНК-сайленсингом. Названия мутантных генов пишут строчными наклонными буквами. Так, запись wox5 означает, что речь идет об организме, в котором не работает ген WOX5, то есть не синтезируется белок WOX5.

Рисунок 3. Экспрессионный каскад, запускающий формирование корня. Под воздействием ауксина (auxin) синтезируются транскрипционные факторы: MP (MONOPTEROS, или ARF5), NTT (NO TRANSMITTING TRACT), WOX5 (WUSCHEL-RELATED HOMEOBOX 5). В эксперименте экспрессируется и pDR5-GFP — репортерная система, состоящая из гена зеленого флуоресцентного белка и синтетического промотора DR5. Этот промотор содержит последовательности, «чувствующие» ауксин (у растений они находятся в промоторах генов, активируемых ауксином). Зеленый белок, соответственно, синтезируется только при контакте промотора с ауксином. Рисунок из [4].

А кто контролирует эти транскрипционные факторы? Почему клетки зародыша так странно и несимметрично делились на ранних этапах? И как из гипофизы развивается корень?

Читайте также:  Окружающий мир 3 класс плешаков рабочая тетрадь разнообразие растений

Всё определяется гормонами, главный из которых ауксин. Еще на начальном этапе его распределение «рассказало» клеткам, где низ. Давно известно, что переносчики ауксина (белки семейства PIN) показывают, куда гормон пойдет, а куда он пойдет — там корень и разовьется.

Итак, ауксин, попадая в гипофизу, начинает действовать через транскрипционный фактор MONOPTEROS (MP), активируя промоторы, содержащие ауксин-регулируемые cis-элементы (auxin-responsive cis-acting elements, AuxREs) [3], и запуская работу факторов транскрипции WOX5 и NTT (NO TRANSMITTING TRACT) (рис. 3). AuxREs-содержащие промоторы — например, DR5 — используются в репортерных системах для детекции ауксина, белок WOX5 также хорошо изучен, а вот механизмы работы NTT были приоткрыты авторами статьи [4] совсем недавно.

Оказалось, что мутация в этом гене не приводила к изменению фенотипа. Представьте, как странно — растению всё равно, работает ген или нет. Отсутствие мутантного фенотипа означает, что кодирование избыточно — есть еще гены «на подстраховке». Эти гены — WIP4 и WIP5 — кодируют белки из семейства WIP DOMAIN PROTEIN. Мутации по каждому в отдельности также не приводят к каким-либо драматическим последствиям. Только тройной мутант — мутант, у которого выключены все три гена (NTT, WIP4, WIP5), не развивал-таки корней. Коротко такой фенотип был назван nww (рис. 4).

Рисунок 4. Нормальное (WT) и мутантное (nww) растения Arabidopsis thaliana. аВнешний вид. Чтобы помешать развитию корня, необходимо, чтобы мутировали три гена одновременно (NTT, WIP4, WIP5). бРаспределение ауксина в корне нормального и дефектного растения. О локализации гормона судят по зеленой флуоресценции от репортерной системы pDR5-GFP (описана под рисунком 3). Обратите внимание, как отличается нормальное распределение ауксина у WT-растения (слева) от «беспорядочного» у nww-растения (справа). Рисунок из [4].

Интересно, что где ген NTT начнет работать, там и разовьется корень. Авторы «заставили» экспрессироваться NTT на месте семядольных листьев, и там развились слабенькие корешки (рис. 5).

Рисунок 5. Нормальный проросток A. thaliana и проросток с геном NTT, работающим в семядолях. Видно, что экспрессия этого гена обеспечивает закладку корней: у мутанта (справа) появились два корешка. Рисунок из [4].

А что же нового показали для апикальной меристемы побега?

Для белков семейств WUS/WOX была продемонстрирована связь с регуляторами семейства HAIRY MERISTEM (HAM). Авторы показали возможность взаимодействия этих белков с помощью дрожжевой двугибридной системы, выявили их согласованное действие на апикальную меристему побега и ко-регуляцию сходного набора генов, а также экспрессию в одних клетках (для этого к их мРНК «пришивали» флуоресцентные метки). Кроме того, фенотипы мутантов wox4 и ham1;2;3;4 были сходны: нет главных факторов, регулирующих меристему — белков семейства WUS/WOX, — а значит, и меристемы нет, то есть расти нечем. Действительно, даже спустя почти четыре недели после прорастания мутантные растения так и оставались внешне «свежепроклюнувшимися проростками» (рис. 6). Авторы предположили, что HAM — кофакторы белков WOX и тоже важны для становления апикальной меристемы как побега, так и корня [5]. В корне мутация ham1;2;3 влияет как минимум на закладку колумеллы (рис. 7).

Рисунок 6. Нормальный побег (WT) и четверной мутант A. thaliana по генам HAM через 26 дней после прорастания. Так как апикальной меристемы нет, расти мутанту нечем. Из листьев у него будут только два семядольных, а проводящая система (сосуды ксилемы, транспортирующие воду, и клетки флоэмы, транспортирующие сахара) будет развита слабо. Рисунок из [5].

Рисунок 7. Гены HAM влияют и на апикальную меристему корня. Покоящийся центр меристемы показан на срезах звездочкой. Как видно, у растения дикого типа (слева) развиваются красивые, кубические меристематические клетки колумеллы (на них указывает стрелка), а у мутантного на том же месте — увеличенные клетки неправильной формы. Этот эффект очень похож на мутацию wox5, но выражен серьезнее, что позволяет предположить, что HAM действуют и через WOX5, и через некий WOX5-независимый путь. Рисунок из [5].

Таким образом, закладка меристем — критический период в формировании зародыша. Это понятно, ведь если не заложится меристема корня, то не будет и корня, растению нечем будет закрепляться в почве и всасывать воду; не заложится меристема побега — не быть листьям и стеблю со всей его сложной проводящей и опорной системой. Именно поэтому в эволюции сформировались сложные системы «подстраховок» белков друг другом, избыточность кодирования: только тройные (nww) и четверные (ham1;2;3;4) мутанты (то есть те, у которых выключены сразу несколько регуляторных генов) полностью теряли меристему. Исследования в биологии развития растений могут помочь селекционерам «манипулировать» корнем и побегом для повышения урожайности.

Источник