Меню

Во взрослой клетке растений сколько вакуолей

Мир науки

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Вакуоли в растительных клетках

Вакуоли — это полости, заполненные клеточным соком — сложным раствором различных водорастворимых соединений. Среди этих соединений имеются:

— Водорастворимые пигменты: антоцианы, флавоны, беталанины;

— Некоторые белки и ферменты.

В вакуолях сосредоточено основное количество клеточной воды. Объем клетки возрастает исключительно за счет жидкости в вакуолях, а не цитоплазмы и ее структурных элементов. Объем центральной вакуоли поддерживается постоянным притоком молекул воды под воздействием осмотических явлений.

Клеточный сок часто бывает окрашен в различные оттенки красного или синеватого цвета. Распространенными красителями вакуолярной жидкости является антоцианы, которые меняют свой цвет в зависимости от соотношения с другими флавоноидных соединений, наличие ионов металла и величины рН сока. Если вакуолярного раствор имеет щелочную реакцию, антоциановые пигменты приобретают разные оттенки синего окраску (лепестки васильков, цикория, льна). Если вакуолярного раствор имеет кислую реакцию, то клеточный сок имеет красный цвет (лепестки роз, плоды вишни, калины, клубники).

Форма и размеры вакуолей изменяются от возраста клетки, уровня ее метаболической активности и выполняемых функций. В меристематических клетках они называются провакуолямы и их не видно в световой микроскоп. Постепенно с ростом и развитием клеток размер вакуолей резко увеличивается за счет их слияния и увеличения объема. В дифференцированных клетках находятся одна или несколько вакуолей в центральной части протопласта. Цитоплазма и ее структурные компоненты занимают пристенные положения или изредка пронизывают вакуолярного полость тонкими тяжами. Вакуоли отделены от цитоплазмы одной мембраной — тонопластом.

Центральная вакуоль взрослой клетки образуется в результате слияния мелких вакуолей меристематичнгих клеток. Формирование вакуолей изучено с помощью электронного микроскопа. Первыми появляются мельчайшие провакуоли, образующиеся из мелких пузырьков на тяжах эндоплазматической сети, что свидетельствует о родстве ее мембранных структур с мембраной вакуолей.

Функции вакуолей в растительной клетке.

— С их участием осуществляются осмотические процессы клеток, которые лежат в основе поглощения и движения воды, питательных веществ и поддерживается напряжен (тургорного) состояние клеточных оболочек.

— Благодаря отдельным вакуолях или их совокупности в клетке — ВАК достигается минимизация объема цитоплазмы и существенное увеличение поверхности раздела между цитоплазмой и тонопластом.

— Центральное положение и значительный объем вакуоли обеспечивает эффективное пространственное размещение хлоропластов с приближением их к поверхности клетки, условия оптимального освещения.

— Вакуоли принимают участие в детоксикации цитоплазмы, выполняя функцию буферной системы ее защиты от метаболических или ионных стрессов.

— Вакуоли свойственна лизосомных функция-расщепление некоторых макромолекул и отработанных органелл.

— Как внутренняя среда, вакуоли поддерживают гомеостаз растительной клетки, а процесс вакуолизации является необходимым условием роста клетки.

— Вакуоли часто является вместилищем различных вторичных метаболитов: алкалоидов, фловоноидив, вредных ионов и веществ. — Они также являются резервуаром, где откладываются про запас некоторые питательные вещества: сахариды, органические кислоты, белки, которые периодически включаются в обмен веществ и используются для нужд клетки как строительный и энергетический материал.

— Вакуоли также участвуют в явлении плазмолиза, так как процесс отставание цитоплазматического содержимого от клеточной оболочки, обусловленный уменьшением количества воды в вакуолях путем осмотических процессов.

Таким образом, вакуоли растительной клетки — полифункциональные образования.

Источник

Особенности и функции вакуоли в растительных клетках

Вакуоль — это клеточная органелла, встречающаяся в ряде различных типов клеток. Она представляют собой заполненные жидкостью закрытые структуры, отделенную от цитоплазмы одной мембраной. Вакуоли встречаются в основном в растительных клетках и грибах. Однако некоторые протисты, клетки животных и бактерии также содержат эти органеллы. Вакуоль отвечают за широкий спектр важных функций в клетке, включая хранение питательных веществ, детоксикацию и экспорт отходов.

Вакуоль в клетках растений

Вакуоль в растительной клетке окружена одной мембраной, называемой тонопластом. Она образуется, когда везикулы, высвобождаемые эндоплазматическим ретикулумом и комплексом Гольджи, сливаются вместе. Недавно развившиеся растительные клетки обычно содержат несколько небольших вакуолей. По мере созревания клетки крупная центральная вакуоль образуется из слияния меньших вакуолей. Центральная вакуоль может занимать до 90% объема клетки.

Функция вакуоли

Вакуоли в клетках растений выполняют ряд важных функций, включая:

  • Тургорное давление — сила, воздействующая на клеточную стенку, так как содержимое клетки подталкивает плазматическую мембрану к стенке клетки. Вода, заполняющая центральную вакуолью, оказывает давление на клеточную стенку, чтобы помочь растительным структурам оставаться жесткими и прямыми.
  • Рост — центральные вакуоли помогают в удлинении клеток, поглощая воду и оказывают давление тургора на клеточную стенку. Росту способствует высвобождение определенных белков, которые снижают жесткость клеточной стенки.
  • Хранение — вакуоли хранят важные минералы, воду, питательные вещества, ионы, отходы, небольшие молекулы, ферменты и растительные пигменты.
  • Деградация молекул — внутренняя кислая среда вакуолей способствует деградации более крупных молекул, направляемых в вакуоль для разрушения. Тонопласт помогает создать эту кислую среду путем переноса ионов водорода из цитоплазмы в вакуоль. Среда с низким рН активирует ферменты, которые разрушают биологические полимеры.
  • Детоксикация — вакуоли удаляют потенциально токсичные вещества из цитозоля, такие как избыточные тяжелые металлы и гербициды.
  • Защита — некоторые вакуоли хранят и выделяют химические вещества, которые являются ядовитыми или неприятными для защиты растений от животных.
  • Прорастание семян — вакуоли являются источником питательных веществ для семян во время прорастания. Они хранят важные углеводы, белки и жиры, необходимые для роста.
Читайте также:  Опыты влияние воды на растения

Вакуоли клеток растений функционируют аналогично лизосомам в клетках животных. Лизосомы являются мембранными мешочками ферментов, которые переваривают клеточные макромолекулы. Вакуоли и лизосомы также участвуют в запрограммированной гибели клеток, которая в растениях происходит посредством процесса, называемого автолизом. Автолиз растений — это естественный процесс, при котором растительная клетка разрушается своими ферментами. В упорядоченной серии событий вакуумирующий тонопласт разрывается, высвобождая свое содержимого в цитоплазму клетки. Пищеварительные ферменты из вакуоли затем разрушают всю клетку.

Источник

Вакуоли и клеточный сок

Вакуоли есть почти во всех взрослых живых растительных клетках.

Они представляют собой полости внутри протопласта, заполненные обычно водянистым содержимым — клеточным соком. Так как вакуоли образуются в результате обмена веществ протопласта, то их форма, размеры и состояние определяются состоянием самого протопласта. В очень молодых, эмбриональных клетках протопласт обычно занимает весь объем клетки и вакуолей нет. В более взрослых клетках наблюдаются многочисленные очень мелкие (2—10 мк) вакуоли, равномерно распределенные в цитоплазме. Ядро обычно лежит в центре клетки. При рассматривании в световой микроскоп эти мелкие вакуоли имеют вид отдельных изолированных зерен или тонких изогнутых нитей, по форме напоминающих митохондрии. Благодаря своей многочисленности они придают цитоплазме пенистый вид. Содержимое их отличается довольно высокой плотностью и вязкостью и представляет собой гидрогель, образованный, по-видимому, гидрофильными белками. При постепенном переходе клетки во взрослое состояние, что выражается прежде всего в ее росте, объем клетки сильно увеличивается, тогда как объем цитоплазмы увеличивается незначительно. Этот процесс, называемый процессом растяжения клетки, связан с накоплением большого количества воды, поглощаемой клеткой извне, и ростом оболочки. Цитоплазма, поглощая воду, выделяет ее затем в вакуоли вместе с продуктами своей жизнедеятельности — продуктами обмена, в виде клеточного сока. При этом мелкие вакуоли растут, содержимое их разжижается, они сливаются друг с другом и число их уменьшается. Отдельные вакуоли часто принимают неправильную форму, изменяемую движением цитоплазмы. Наконец, во взрослой клетке, достигшей своего окончательного размера, все вакуоли сливаются в одну центральную вакуолю, а протопласт оттесняется к оболочке, облекая вакуолю в виде тонкого постенного слоя. Как показали электронномикроскопические исследования, толщина этого постенного слоя цитоплазмы может быть значительно меньше толщины первичной оболочки и митохондрий. Это наблюдается, например, в клетках основной паренхимы стебля, толщина слоя цитоплазмы которых находится на пределе разрешающей способности светового микроскопа (около 0,2 мк). В этих клетках плазмалемма и тонопласт до такой степени сближаются друг с другом, что клеточные органоиды (митохондрии и пластиды), зажатые между ними, изменяют свою форму.

В постенном слое цитоплазмы располагаются ядро и другие органоиды клетки. Иногда ядро занимает центр клетки, окружающая его цитоплазма соединяется с постенной цитоплазмой тяжами, проходящими через полость вакуоли. Кроме цитоплазмы, вакуолеподобные образования могут возникать при особых условиях и в других органоидах, например, в пластидах и в ядре.

Присутствие одной крупной вакуоли, заполненной клеточным соком, является характерной особенностью дифференцированной (взрослой) растительной клетки, которая остается живой к моменту зрелости. Объем такой вакуоли обычно значительно больше объема всех других клеточных компонентов, вместе взятых, и часто почти равен объему всей клетки. Так, вакуоли клеток сочных органов растений нередко занимают свыше 90% объема клетки.

Процесс вакуолизации может быть обратимым. Так, иногда взрослые клетки опять переходят в эмбриональное состояние, приобретая способность делиться. При этом объем протопласта увеличивается, а объем клеточного сока уменьшается, вместо одной крупной вакуоли опять возникают многочисленные мелкие вакуоли, имеющие вид зернышек или коротких палочек. Содержимое вакуолей — клеточный сок — представляет собой очень маловязкую жидкость и является весьма слабым водным раствором различных веществ, синтезированных и выделенных протопластом. Таким образом, основной компонент клеточного сока — вода. В ней аккумулируются многочисленные соединения, минеральные и органические, которые находятся в состоянии истинного или коллоидного раствора и реже — в виде твердых включений. Вязкость клеточного сока связана с присутствием коллоидов, которые иногда при обезвоживании клетки могут придавать ему состояние настоящего геля. Реакция клеточного сока обычно слабокислая или нейтральная, реже щелочная. Среди веществ клеточного сока преобладают соли, органические кислоты и растворимые углеводы. Соли минеральных и органических кислот — нитраты, сульфаты, соли лимонной, щавелевой, янтарной кислот — играют наибольшую роль в создании осмотического давления клетки. Роль органических кислот клеточного сока до конца еще не выяснена. До недавнего времени их рассматривали как отбросы, конечные продукты обмена веществ протопласта. Однако появились данные, показывающие, что при определенных условиях органические кислоты могут вновь использоваться протопластом. Им приписывается также роль защиты клетки от нападения паразитов. Из растворимых углеводов в клеточном соке наиболее распространены сахароза, глюкоза (виноградный сахар) и фруктоза. Они играют роль запасных энергетических веществ и служат важнейшим питательным материалом клетки. Накапливающаяся в большом количестве в клеточном соке корнеплодов сахарной свеклы и сердцевины сахарного тростника сахароза имеет большое народнохозяйственное значение, так как служит основным источником получения сахара. Глюкоза и фруктоза, как показывает их название, распространены в плодах. В клубнях георгины, земляной груши, в корнях одуванчика и других растений семейства сложноцветных клеточный сок содержит близкий к крахмалу углевод инулин, отличающийся от крахмала растворимостью в воде. При действии спирта инулин кристаллизуется, образуя так называемые сферокристаллы.

Читайте также:  Китайские производители светодиодов для растений

Для некоторых растительных групп (семейства кактусовых, толстянковых, орхидных) характерно накопление в клеточном соке слизистых веществ, также являющихся углеводами. Очень часто в состав клеточного сока входят глюкозиды (миндаль, наперстянка) и алкалоиды (мак, кофе, чай). Первые представляют собой соединения глюкозы со спиртами, альдегидами и другими веществами, не содержащими азот, а вторые — азотистые вещества сложного состава. Роль их в обмене веществ не выяснена. Они имеют горький вкус и в определенных количествах ядовиты для животных, предохраняя таким образом растение от поедания. В то же время многие из них представляют собой ценные лекарства, например атропин, — у белладонны, морфин и кодеин — у мака, хинин — у хинного дерева.

В клеточном соке очень часто встречаются дубильные вещества — танниды. Это сложные органические безазотистые соединения вяжущего вкуса, сильно преломляющие свет. Клеточный сок, содержащий танниды, отличается высокой вязкостью. Особенно богаты дубильными веществами клетки коры (дуб, ива, ель), листья чая, семена кофе. При отмирании клетки танниды окисляются, пропитывают клеточную оболочку и придают ей темно-коричневый цвет. Значение дубильных веществ в жизни самого растения выяснено недостаточно. Они обладают антисептическими свойствами и поэтому служат защитными веществами против нападения различных микроорганизмов. Техническое значение таннидов состоит в том, что с их помощью дубят кожу, после чего она становится мягкой, не ослизняющейся и не пропускает воду.

Все эти вещества, растворенные в клеточном соке, как правило, бесцветны и их выявляют лишь специальными реактивами. Поэтому клеточный сок может быть и бесцветным, и окрашенным в различные цвета, благодаря присутствию растворимых в воде пигментов. Наиболее распространенные пигменты клеточного сока — антоцианины и флавоны — относятся к группе глюкозидов. Чаще всего они сосредоточены в клеточном соке наружных слоев клеток высших растений. Антоцианины обусловливают красный цвет корнеплодов и листьев столовой свеклы, красный, пурпуровый или синий цвет лепестков многих цветков и других частей растений. Особенно часто они встречаются в клетках проростков и молодых растений, которые приобретают поэтому красноватые тона. Различие в оттенках цвета — от фиолетового до красного — связано с различной реакцией клеточного сока: если реакция кислая, то господствуют красные тона, при нейтральной реакции — фиолетовые, а при слабощелочной— синие. Присутствием антоцианов объясняется и цвет плодов вишни, сливы, винограда. Желтый цвет цветков, например, лепестков льнянки, желтой георгины связан с присутствием в клеточном соке пигментов группы флавонов.

Читайте также:  Светодиодные лампы для растений белого цвета

Значение пигментов клеточного сока в обмене веществ выяснено недостаточно. Находясь в клетках лепестков и вызывая их яркую окраску, пигменты выполняют функцию привлечения насекомых-опылителей. Так как они сильно поглощают ультрафиолетовые лучи, то возможно, что молодые части растений благодаря этому защищены от вредного действия этих лучей.

Состав, концентрация и вязкость клеточного сока у разных видов растений различны и изменяются даже в одном растении от органа к органу, от ткани к ткани и от клетки к клетке. Поэтому за исключением воды не все клетки накапливают в вакуолях все перечисленные вещества. Многие из веществ клеточного сока, например, алкалоиды, глюкозиды встречаются только у некоторых групп растений, другие же вещества распространены более широко. Весьма часто в клеточном соке отдельных специализированных взрослых клеток накапливается практически только один продукт обмена веществ, но в больших количествах. Например, дубильные вещества накапливаются в особых крупных клетках — вместилищах, рассеянных в коре и древесине. В клеточном соке некоторых клеток могут накапливаться большие количества слизи, растворимых белков (слизевые и белковые вакуоли).

На состав и свойства клеточного сока большое влияние оказывают возраст клетки (и самого растения) и окружающие условия. Например, незрелые сочные плоды, обычно зеленые, кислые и часто вяжущие, по созревании меняют свою окраску и вкус (вишня, различные ягоды и др.). Это связано с тем, что по мере созревания плодов уменьшается содержание органических кислот, вызывающих кислый вкус, дубильных веществ, вызывающих вяжущий вкус, и накапливаются сахара. Накапливание антоцианинов особенно интенсивно происходит в листьях осенью при сухой, солнечной и прохладной погоде, когда желтеющие листья приобретают красивые красноватые оттенки, обусловленные накоплением антоцианинов.

Несмотря на то, что вакуоли с клеточным соком не обладают свойствами живого, тем не менее их значение в жизни клетки и растения очень разнообразно. Прежде всего вакуоля вместе с цитоплазмой выполняет функцию поглощения воды и растворов и передвижения их по растению. Поглощенная клеточным соком вода придает клетке упругое состояние (тургор). Тургор обеспечивает сохранение сочными органами определенной формы и положения в пространстве, а также сопротивление их действию механических факторов. Вакуоли служат также резервуарами запасной воды. Растворенные в клеточном соке соли, органические кислоты, углеводы и белки могут вновь использоваться в обмене веществ протопласта.

Механизм заложения вакуолей еще полностью не выяснен. Электронномикроскопические исследования показали, что во взрослой клетке вакуоли отграничены от цитоплазмы одной мембраной— тонопластом. Иногда, если в клетке несколько крупных вакуолей, то у них наблюдаются длинные трубки, вытягивающиеся в сторону цитоплазмы, причем трубки часто напоминают контуры гладкой эндоплазматической сети.

Участок эмбриональной клетки

В молодых клетках, как видно на некоторых электронограммах, обнаруживаются многочисленные местные расширения межмембранного пространства эндоплазматической сети. Эти клетки при рассматривании в световой микроскоп имеют мельчайшие вакуоли, напоминающие по форме те, которые получились на электронограммах. Это дало основание некоторым ученым выдвинуть гипотезу, согласно которой вакуоли закладываются в результате местных расширений межмембранного промежутка эндоплазматической сети. В пользу этой точки зрения свидетельствует и наличие одной мембраны вокруг вакуолей. Однако до сих пор не удалось получить электронограмм, показывающих на одном срезе непрерывность ядерной оболочки, эндоплазматической сети и вакуолей. Поэтому была развита и другая гипотеза, согласно которой в отдельных участках гиалоплазмы происходит местная гидратация (оводнение) белков без всякой связи с эндоплазматической сетью. В гиалоплазме эмбриональных клеток на электронограммах были обнаружены отдельные более светлые участки, не ограниченные сначала мембраной и содержащие остатки цитоплазмы. Эти участки и считают зачатками вакуолей. При последующем слиянии этих маленьких капелек в более взрослых клетках возникал тонопласт, и вакуоля принимала типичную форму. Возникновение трубчатых удлинений у крупных вакуолей, выступающих в гиалоплазму, по этой гипотезе, объясняется деформацией вакуолей в результате движения цитоплазмы. Ограниченные мембраной структуры с признаками вакуолей были найдены в контакте с диктиосомами или близко от них. Это послужило основанием для гипотезы, согласно которой вакуоли образуются путем разбухания межмембранного пространства наружных цистерн диктиосом. При этом мембраны диктиосомы становятся мембранами тонопласта.

Какая из этих гипотез соответствует действительности, должны показать дальнейшие исследования. Вполне возможно, что существование различных гипотез объясняется различными путями заложения вакуолей.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Adblock
detector