Меню

Ядро в клетке растений открыл левенгук

Химия, Биология, подготовка к ГИА и ЕГЭ

История изучения клетки

Сентябрь 1674 г . Лондонское Королевское научное общество. Поступила посылка с документами на нидерландском языке. В них были описания удивительных существ.

Автор описывал их как мельчайших животных, которые “извиваются как угри и их целый миллион на одной песчинке”.

К письму прилагались рисунки

Члены Английского Научного общества — все старые ученые, никогда не видели ничего подобного. Это письмо их потрясло. Конечно, они не поверили тому, что прочитали.

У них тоже были микроскопы (микроскоп появился примерно в 1600 г). Однако, они никогда не видели “маленьких животных”, описанных Левенгуком.

Они решили, что этот безизвестный голландец просто сумасшедший.

Антони ван Левенгук не был ученым. Вообще-то, сначала он торговал тканями. И как любой торговец, заботящийся о качестве своего товара, он проверял его с помощью увеличительного стекла.

Левенгук был просто одержим линзами и увеличительными стеклами. В итоге он стал лучшим производителем линз в Европе.

В свой микроскоп он вставил самые мощные в то время линзы. Никто не мог создать более мощный микроскоп на протяжении века.

Маленькая, но самая мощная линза того времени произвела переворот в науке и открыла путь истории изучения клетки.

Человеком он был любознательным, поэтому рассматривал в микроскоп буквально все. И воду.

“ … это просто чудесно… доселе не было моему глазу большего удовольствия, чем наблюдать тысячи мельчайших животных, снующих в капле воды…”

Антони Ван Левенгук открыл Микроскопическую Вселенную.

Однако, он не совсем правильно истолковал то, что увидел. Он решил, что эти микроскопические животные имеют сердце, мышцы и другие органы, как и животные макромира.

Он назвал их “Анималькулы” — микроскопические зверьки.

Это открытие могли и не заметить — Левенгук был никому не известен в ученом мире. Сегодня его назвали бы натуралистом — любителем.

Королевские ученые отнеслись к записям с недоверием и поручили во всем разобраться Роберту Гуку. В то время он был главным специалистом по исследованию микроскопических объектов.

Изучая губчатую ткань растений, Гук ввел в биологию термин “клетка”.

Он повторил опыты Левенгука с микроскопом и добился таки того, что увидел “маленьких животных”.

Королевским Ученым пришлось признать правоту Левенгука.

Это повергло их в шок. Окружающий мир, казалось, так хорошо ими изученный, оказался намного более сложным и удивительным.

В 1680 г Антони Ван Левенгука приняли в Международное Королевское Научное Сообщество и провозгласили “Первооткрывателем микроскопических животных”, подтвердив это соответствующим сертификатом.

Новоиспеченый ученый не стал дого почивать на лаврах и стал изучать … себя. Первое, чем он занялся, это сделал соскоб с зубов и увидел новых “Анималькул” — бактерий.

А в капле собственной крови он увидел круглые красные тельца, которые назвал “Глобулы”.

К сожалению, после этого развитие микробиологии приостановилось на целый век…

Следующее имя в истории изучения клетки — Роберт Броун

(да, именно он, чьим именем названо беспорядочное движение частиц)

В конце XVIII — первой половине XIX века Роберт Броун решил заглянуть уже внутрь растительной клетки.

Он заметил, что внутри каждой клетки есть плотное образование.

Это стало переломным моментом в истории науки.

Броун назвал это образование “Ядром”.

Более того, он доказал, что ядра есть во всех клетках. Это утверждение было задокументировано в его труде в 1830 г.

Позже наблюдения Броуна позволят ученым окончательно разобраться в строении клеток.

Однако, чтобы продолжить изучение клеток, ученым пришлось создать более мощный микроскоп.

История изучения клетки. Берлин.

В 1837 г зоолог Т. Шванн объединил свои исследования с ботаником М. Шлейденом.

Они обнаружили нечто общее для всех живых существ — и растительного, и животного происхождения.

“Все живое состоит из клеток”

Получается, что многоклеточный организм — это “кооперация клеток”

М.Шлейден и Т. Шванн создали клеточную теорию

Но не все их утверждения оказались верны…

Они ошиблись в вопросе происхождения клеток.

Шванн и Шлейден считали, что клетки возникают стихийно и растут как кристаллы из мельчайших частиц неживой материи. Они утверждали, что видели под микроскопом как это происходит.

Роберт Ремак и Рудольф Вирхов

Один провел все необходимые исследования, а другой… получил все лавры.

Ремак задался целью выяснить, откуда берутся клетки. В своей научной работе он подробно описал стадии деления клетки. Т.к. он изучал эмбрионы, то проследил весь путь — от двух клеток и бластулы до формирования тканей, органов, а затем и самого организма.

Он доказал, что клетки возникают только из клеток и никак иначе.

Вирхов был профессором анатомии. В 1855 году ученый “сделал ход конем”. Он взял все результаты исследований Ремака, включил их в свою книгу и присвоил себе.

Читайте также:  Отметь рисунки с изображениями растений из которых получают сахар

Т.к. он был уважаемым профессором, к нему прислушались.

Как это ни прискорбно, но в истории изучения клетки про Вирхова до сих пор пишут во всех учебниках, а Ремаку — настоящему автору открытия отведено лишь скромное место в сносках…

Что означало это открытие?

  • что вся жизнь на Земле началась когда-то с одной клетки.
  • все живые существа составляют одно генеалогическое дерево

Клеточная теория обрела законченный вид

Источник

Открытие клетки организма

Великий русский физиолог И. П. Павлов писал:

Науку принято сравнивать с постройкой. Как здесь, так и там трудится много народа, и здесь и там происходит разделение труда. Кто составляет план, одни кладут фундамент, другие возводят стены и так далее.

«Постройка» клеточной теории началась почти 350 лет назад.

Итак, 1665 год, Лондон, кабинет физика Роберта Гука. Хозяин настраивает микроскоп собственной конструкции. Профессору Гуку тридцать лет, он окончил Оксфордский университет, работал ассистентом у знаменитого Роберта Бойля.

Гук был неординарным исследователем. Свои попытки заглянуть за горизонт человеческих познаний он не ограничивал какой-либо одной областью. Проектировал здания, установил на термометре «точки отсчёта» — кипения и замерзания воды, изобрёл воздушный насос и прибор для определения силы ветра. Потом увлёкся возможностями микроскопа. Он рассматривал под стократным увеличением всё, что попадается под руку, — муравья и блоху, песчинку и водоросли. Однажды под объективом оказался кусочек пробки. Что же увидел молодой учёный? Удивительную картину — правильно расположенные пустоты, похожие на пчелиные соты. Позднее такие же ячейки он нашёл не только в отмершей растительной ткани, но и в живой. Гук назвал их клетками (англ. cells) и вместе с полусотней других наблюдений описал в книге «Микрография». Однако именно это наблюдение под № 18 принесло ему славу первооткрывателя клеточного строения живых организмов. Славу, которая самому Гуку была не нужна. Вскоре его захватили другие идеи, и он больше никогда не возвращался к микроскопу, а о клетках и думать забыл.

Зато у других учёных открытие Гука пробудило крайнее любопытство. Итальянец Марчелло Мальпиги называл это чувство «человеческим зудом познания». Он также стал рассматривать в микроскоп разные части растений. И обнаружил, что те состоят из мельчайших трубочек, мешочков, пузырьков. Разглядывал Мальпиги под микроскопом и кусочки тканей человека и животных. Увы, техника того времени была слишком слаба. Поэтому клеточное строение животного организма учёный так и не распознал.

Дальнейшая история открытия продолжилась в Голландии. Антони ван Левенгук (1632—1723) никогда не думал, что его имя будет стоять в ряду великих учёных. Сын промышленника и торговца из Делфта, он тоже торговал сукном. Так и прожил бы Левенгук незаметным коммерсантом, если бы не его страстное увлечение да любопытство. На досуге он любил шлифовать стёкла, изготовляя линзы. Голландия славилась своими оптиками, но Левенгук достиг небывалого мастерства. Его микроскопы, состоявшие лишь из одной линзы, были гораздо сильнее тех, которые имели несколько увеличительных стёкол. Сам он утверждал, что сконструировал 200 таких приборов, дававших увеличение до 270 раз. А ведь ими было очень трудно пользоваться. Вот что писал об этом физик Д. С. Рождественский: «Вы можете себе представить ужасное неудобство этих мельчайших линзочек. Объект вплотную к линзе, линза вплотную к глазу, носа девать некуда». Кстати, Левенгук до последних дней, а дожил он до 90 лет, сумел сохранить остроту зрения.

Через свои линзы естествоиспытатель увидел новый мир, о существовании которого не догадывались даже отчаянные фантазёры. Больше всего поразили Левенгука его обитатели — микроорганизмы. Эти мельчайшие существа обнаруживались везде: в капле воды и комке земли, в слюне и даже на самом Левенгуке. С 1673 г. подробные описания и зарисовки своих удивительных наблюдений исследователь отправлял в Лондонское королевское общество. Но учёные мужи не спешили ему верить. Ведь было задето их самолюбие: «неуч», «профан», «мануфактурщик», а туда же, в науку. Левенгук тем временем неустанно посылал новые письма о своих замечательных открытиях. В итоге академикам пришлось признать заслуги голландца. В 1680 г. Королевское общество избрало его полноправным членом. Левенгук стал мировой знаменитостью. Отовсюду в Делфт ехали смотреть на диковины, открываемые его микроскопами. Одним из самых знатных гостей был русский царь Пётр I — большой охотник до всего нового. Левенгуку, не прекращавшему исследований, многочисленные гости только мешали. Любопытство и азарт подгоняли первооткрывателя. За 50 лет наблюдений Левенгук открыл более 200 видов микроорганизмов и первым сумел описать структуры, которые, как мы теперь знаем, являются клетками человека. В частности, он увидел эритроциты и сперматозоиды (по его тогдашней терминологии, «шарики» и «зверьки»). Конечно, Левенгук и не предполагал, что это были клетки. Зато он рассмотрел и очень подробно зарисовал строение волокна сердечной мышцы. Поразительная наблюдательность для человека с такой примитивной техникой!

Читайте также:  Искусственные аквариумные растения из шелка


Каспар Фридрих Вольф

Антони ван Левенгук был, пожалуй, единственным за всю историю построения клеточной теории учёным без специального образования. Зато все остальные, не менее знаменитые исследователи клеток учились в университетах и были людьми высокообразованными. Немецкий учёный Каспар Фридрих Вольф (1733—1794), например, изучал медицину в Берлине, а затем в Галле. Уже в 26 лет он написал труд «Теория зарождения», за который был подвергнут на родине резкой критике коллег. (После этого по приглашению Петербургской академии наук Вольф приехал в Россию и остался там до конца жизни.) Что же нового для развития клеточной теории дали исследования Вольфа? Описывая «пузырьки», «зёрнышки», «клетки», он увидел их общие черты у животных и растений. Кроме того, Вольф впервые предположил, что клетки могут иметь определённое значение в развитии организма. Его труды помогли другим учёным правильно понять роль клеток.

Теперь хорошо известно, что главная часть клетки — ядро. Впервые, кстати, описал ядро (в эритроцитах рыб) Левенгук ещё в 1700 г. Но ни он, ни многие другие видевшие ядро учёные не придавали ему особого значения. Лишь в 1825 г. чешский биолог Ян Эвангелиста Пуркинье (1787—1869), исследуя яйцеклетку птиц, обратил внимание на ядро. «Сжатый сферический пузырёк, одетый тончайшей оболочкой. Он. преисполнен производящей силой, отчего я и назвал его «зародышевый пузырёк», — писал учёный.


Ян Эвангелиста Пуркинье

В 1837 г. Пуркинье сообщил научному миру результаты многолетней работы: в каждой клетке организма животного и человека есть ядро. Это была очень важная новость. В то время было известно лишь о наличии ядра в растительных клетках. К такому выводу пришёл английский ботаник Роберт Броун (1773—1858) за несколько лет до открытия Пуркинье. Броун, кстати, и ввёл в употребление сам термин «ядро» (лат. nucleus). А Пуркинье, к сожалению, не сумел обобщить накопленные знания о клетках. Прекрасный экспериментатор, он оказался слишком осторожен в выводах.

К середине XIX в. наука наконец вплотную подошла к тому, чтобы достроить здание под названием «клеточная теория». Немецкие биологи Маттиас Якоб Шлейден (1804—1881) и Теодор Шванн (1810—1882) были друзьями. В их судьбах немало общего, но главное, что их объединяло, — «человеческий зуд познания» и страсть к науке. Сын врача, юрист по образованию, Маттиас Шлейден в 26 лет решил круто изменить свою судьбу. Он вновь поступил в университет — на медицинский факультет и по окончании его занялся физиологией растений. Целью его работы было понять, как происходит образование клеток. Шлейден совершенно справедливо полагал, что ведущая роль в этом процессе принадлежит ядру. Но, описывая возникновение клеток, учёный, увы, ошибался. Он считал, что каждая новая клетка развивается внутри старой. А это, конечно же, не так. Кроме того, Шлейден думал, что клетки животных и растений не имеют ничего общего. Вот почему не он сформулировал основные постулаты клеточной теории. Это сделал Теодор Шванн.

Воспитываясь в очень религиозной семье, Шванн мечтал стать священнослужителем. Для того чтобы лучше подготовиться к духовной карьере, он поступил на философский факультет Боннского университета. Но вскоре любовь к естественным наукам пересилила, и Шванн перешёл на медицинский факультет. После его окончания он работал в Берлинском университете, где изучал строение спинной струны — основного органа нервной системы животных из отряда круглоротых (класс водных позвоночных животных, к которым относятся миноги и миксины). Учёный открыл оболочку нервных волокон у человека (названную позже шванновской). Серьёзной научной работой Шванн занимался всего пять лет. В расцвете сил и славы он неожиданно бросил исследования, уехал в маленький тихий Льеж и стал преподавать. Религия и наука так и не сумели ужиться в этом замечательном человеке.

В октябре 1837 г. в Берлине произошло важнейшее для науки событие. Случилось всё в небольшом ресторанчике, куда зашли перекусить два молодых человека. Годы спустя один из них — Теодор Шванн вспоминал: «Однажды, когда я обедал с господином Шлейденом, этот знаменитый ботаник указал мне на важную роль, которую ядро играет в развитии растительных клеток. Я тотчас же припомнил, что видел подобный же орган в клетках спинной струны, и в тот же момент понял крайнюю важность, которую будет иметь моё открытие, если я сумею показать, что в клетках спинной струны это ядро играет ту же роль, что и ядро растений в развитии их клеток. С этого момента все мои усилия были направлены к нахождению доказательств предсуществования ядра клетки».

Читайте также:  Динамика популяций растений и животных

Усилия оказались не напрасны. Уже через два года вышла в свет его книга «Микроскопические исследования о соответствии в структуре и росте животных и растений». В ней были изложены основные идеи клеточной теории. Шванн не только первым увидел в клетке то, что обьединяет и животные, и растительные организмы, но и показал сходство в развитии всех клеток.

Конечно, авторство со Шванном разделяют и все учёные, возводившие «постройку». А особенно Маттиас Шлейден, подавший другу блестящую идею. Известен афоризм: «Шванн стоял на плечах Шлейдена». Его автор — Рудольф Вирхов, выдающийся немецкий биолог (1821—1902). Вирхову же принадлежит и другое крылатое выражение: «Omnis cellula е cellula», что с латыни переводится «Всякая клетка от клетки». Именно этот постулат стал триумфальным лавровым венком для теории Шванна.

Рудольф Вирхов изучал значение клетки для всего организма. Ему, окончившему медицинский факультет, особенно интересна была роль клеток при заболеваниях. Работы Вирхова о болезнях послужили базой для новой науки — патологической анатомии. Именно Вирхов ввёл в науку о болезнях понятие клеточной патологии. Но в своих исканиях он несколько перегнул палку. Представляя живой организм как «клеточное государство», Вирхов считал клетку полноценной личностью. «Клетка. да, это именно личность, притом деятельная, активная личность, и её деятельность есть. продукт явлений, связанных с продолжением жизни».

Шли годы, развивалась техника, появился электронный микроскоп, дающий увеличение в десятки тысяч раз. Учёные сумели разгадать немало тайн, заключённых в клетке. Было подробно описано деление, открыты клеточные органеллы, поняты биохимические процессы в клетке, наконец, была расшифрована структура ДНК. Казалось бы, ничего нового о клетке уже не узнать. И всё же есть ещё много непонятого, неразгаданного, и наверняка будущие поколения исследователей положат новые кирпичики в здание науки о клетке!

Источник

Единицы живого

пятница, 18 ноября 2011 г.

Ядро клетки.

В 30-х годах 19 века шотландский ученый Роберт Броун (1773-1858) сделал очень важное открытие. Он обнаружил внутри клетки плотное круглое образование, которое назвал ядром.

Клеточное ядро выполняет две важнейшие функции. Во-первых, управляет делением, при котором образуются новые клетки, во всем подобные материнской. Во-вторых, регулирует все процессы белкового синтеза, обмена веществ и энергии, идущие в клетке.

Клеточное ядро — важнейшая часть клетки. Оно содержит хромосомы, несущие ДНК, в которой закодированы все свойства клетки. Ядро необходимо для осуществления двух важнейших функций. Во-первых, это деление, при котором образуются новые клетки, во всём подобные материнской. Во-вторых, ядро регулирует все процессы белкового синтеза, обмена веществ и энергии, идущие в клетке.

В отличие от некоторых низших растений и простейших, клетки которых содержат несколько ядер, высшие животные, растения и грибы состоят из клеток, в которых находится одно ядро. Оно имеет форму шара с диаметром от 3 до 10 мкм (рис. 11, 8).ф

Мембрана ядра клетки или ядерная оболочка.

Ядро окружено оболочкой, состоящей из двух мембран,каждая из которых подобна плазматической мембране. Через определенные интервалы обе мембраны сливаются друг с другом, образуя отверстия диаметром 70 нм — ядерные поры. Через них осуществляется активный обмен веществами между ядром и цитоплазмой. Размеры пор позволяют проникать из ядра в цитоплазму даже крупным молекулам и частицам.

В ядрах всегда присутствует одно или несколько ядрышек (рис. 11, 9).

Ядрышко формируется определенными участками хромосом; в нем образуются рибосомы.

Ядрышко — это высокоорганизованная структура внутри ядра. В составе ядрышка выявляются большие петли ДНК, содержащие гены РНК, которые с необычайно высокой скоростью транскрибируются РНК полимеразой I . Эти петли называются-«Ядрышковыми организаторами».

В отличие от цитоплазматических оргнанелл ядрышко не имеет мембраны, которое окружало бы его содержимое. Похоже, что оно образовано недозрелыми предшественниками рибосом, специфически связанными друг с другом неизвестным образом. Размер ядрышка отражает степень его функциональной активности, которая широко варьирует в различных клетках и может изменяться в индивидуальной клетке.

В ядрышке происходят транскрипция рибосомных генов, процессинг предшественников рРНК и сборка прерибосомных частиц из рибосомных белков и рРНК. Механизмы формирования ядрышка не ясны. В соответствии с одной из гипотез, ядрышко рассматривают как нуклеопротеиновый комплекс, спонтанно появляющийся в результате объединения регуляторных белково-нуклеиновых комплексов, возникающих на повторяющихся последовательностях рДНК во время их транскрипции. Действительно, гены рРНК человека организованы в виде 250 тандемно повторяющихся последовательностей длиной в 44 т.п.о. каждая, которые вместе с ассоциированными с ними белками формируют сердцевину ядрышка. Оно заполняется другими компонентами во время процессинга рРНК и сборки рибосомных субчастиц.

Источник

Adblock
detector