Меню

Ядрышки клетка растений или животных

Особенности строения и функции ядра клетки

Ядро – главное составляющее живой клетки, которое несет наследственную информацию, закодированную набором генов. Оно занимает центральное положение в клетке. Размеры варьируются, форма обычно сферичная или овальная. В диаметре ядро в разных клетках может быть от 8 до 25мкм. Есть исключения, примеру, яйцеклетки рыб имеют ядра диаметром в 1 мм.

Особенности строения ядра

Заполнено ядро жидкостью и несколькими структурными элементами. В нем выделяют оболочку, набор хромосом, нуклеоплазму, ядрышка. Оболочка двухмембранная, между мембранами находится перенуклеарное пространство.

Внешняя мембрана сходна по строению с эндоплазматическим ретикулумом. Она связана с ЭПР, который будто ответвляется от ядерной оболочки. Снаружи на ядре находятся рибосомы.

Внутренняя мембрана прочная, так как в ее состав входит ламина. Она выполняет опорную функцию и служит местом крепления для хроматина.

Мембрана имеет поры, обеспечивающие обменные процессы с цитоплазмой. Ядерные поры состоят из транспортных белков, которые поставляют в кариоплазму вещества путем активного транспорта. Пассивно сквозь поровые отверстия могут пройти только небольшие молекулы. Также каждая пора прикрыта поросомой, которая регулирует обменные процессы в ядре.

Количество ядер в разных по специализации клетках различно. В большинстве случаев клетки одноядерные, но есть ткани, построенные из многоядерных клеток (печеночная или ткань мозга). Есть клетки лишенные ядра – это зрелые эритроциты.

У простейших выделяют два типа ядер: одни отвечают за сохранение информации, другие – за синтез белка.

Ядро может прибывать в состоянии покоя (период интерфазы) или деления. Переходя в интерфазу, имеет вид сферического образования с множеством гранул белого цвета (хроматина). Хроматин бывает двух видов: гетерохроматин и эухроматин.

Эухроматин – это активный хроматин, который сохраняет деспирализированное строение в покоящемся ядре, способен к интенсивному синтезу РНК.

Гетерохроматин – это участки хроматина, которые находятся в конденсированном состоянии. Он может при необходимости переходить в эухроматиновое состояние.

При использовании цитологического метода окрашивания ядра (по Романовскому-Гимзе) выявлено, что гетерохроматин меняет цвет, а эухроматин нет. Хроматин построен из нуклеопротеидных нитей, названных хромосомами. Хромосомы несут в себе основную генетическую информацию каждого человека. Хроматин — форма существования наследственной информации в интерфазном периоде клеточного цикла, во время деления он трансформируется в хромосомы.

Строение хромосом

Каждая хромосома построена из пары хроматид, которые находятся параллельно друг к другу и связаны только в одном месте – центромере. Центромера разделяет хромосому на два плеча. В зависимости от длины плеч выделяют три вида хромосом:

Некоторые хромосомы имеют дополнительный участок, который крепится к основному нитевидными соединениями – это сателлит. Сателлиты помогают идентифицировать разные пары хромосом.

Метафазное ядро представляет собой пластинку, где располагаются хромосомы. Именно в эту фазу митоза изучается количество и строение хромосом. Во время метафазы сестринские хромосомы двигаются в центр и распадаются на две хроматиды.

Строение ядрышка

В ядре также находится немембранное образование — ядрышко. Ядрышки представляют собой уплотненные, округлые тельца, способные преломлять свет. Это основное место синтеза рибосомальной РНК и необходимых белков.

Число ядрышек различно в разных клетках, они могут объединяться в одно крупное образование или существовать отдельно друг от друга в виде мелких частиц. При активации синтетических процессов объем ядрышка увеличивается. Оно лишено оболочки и находится в окружении конденсированного хроматина. В ядрышке также содержатся металлы, в большей мере цинк. Таким образом, ядрышко – это динамичное, меняющееся образование, необходимое для синтеза РНК и транспорта ее в цитоплазму.

Нуклеоплазма заполняет все внутреннее пространство ядра. В нуклеоплазме находится ДНК, РНК, протеиновые молекулы, ферментативные вещества.

Функции ядра в клетке

  1. Принимает участие в синтезе белка, рибосомной РНК.
  2. Регулирует функциональную активность клетки.
  3. Сохранение генетической информации, точная ее репликация и передача потомству.

Роль и значение ядра

Ядро является главным хранилищем наследственной информации и определяет фенотип организма. В ядре ДНК существует в неизмененном виде благодаря репарационным ядерным ферментам, которые способны ликвидировать поломки и мутации. Во время клеточного деления ядерные механизмы обеспечивают точное и равномерное расхождение генетической информации в дочерние клетки.

Источник

Естествознание.ру

Строение клетки

Жизнь — способ существования одних тел за счет выживания других.

Задумывались ли вы, из чего состоят растения, животные и человек? На первый взгляд все вокруг состоит из крупных деталей — частей тела и органов. На самом деле все живое на планете состоит из микроскопических частиц — клеток. Деревья, звери, человек, микробы — все организмы построены из невидимых глазу «кирпичиков». Собранные воедино, они складываются в целостную систему. Но каждая клетка — отдельный микромир со своими свойствами и функциями.

Читайте также:  Сколько хромосом в одной клетке растения

Когда одной клетки достаточно

До 1665 года человечество не подозревало о существовании клеток. Впервые их обнаружил англичанин Роберт Гук. Он разглядывал через увеличительный прибор кору дуба и заметил, что она состоит из множества ячеек. Позднее выяснилось, что это были мертвые оболочки клеток, полые внутри.

В живых клетках растений, в отличие от мертвых, присутствует вязкое вещество — цитоплазма, в которой плавают ядро и вакуоли — пузырьки с клеточным соком. Взгляните на разрезанный помидор или кусочек арбуза. Вы заметите, что спелая мякоть состоит из мельчайших гранул. Это и есть растительные клетки.

Как вы думаете, все ли живые существа состоят из множества клеток, или порой достаточно и одной, чтобы создание могло полноценно жить, питаться и размножаться? Иногда одной клетки хватает для жизни. На Земле есть ничтожно малые существа — одноклеточные, организм которых состоит из одной-единственной клетки.

В 1675 году голландский ученый Антони ван Левенгук начал рассматривать под микроскопом капельки воды. Он заметил, что жидкость кишит микроскопическими созданиями. Каждое из них могло бы с легкостью проплыть сквозь тонкое игольное ушко. Тела этих крошечных существ состояли из одной клетки. Тем не менее, организмы легко реагировали на свет, тепло, химические вещества и механические раздражители. Они были способны самостоятельно питаться, дышать, размножаться, расти и развиваться.

Однажды Роберт Гук (1635-1703 гг. — английский естествоиспытатель и изобретатель) вел наблюдения на старом микроскопе. Он был в виде полуметровой позолоченной вертикальной трубы. Работать на нем приходилось, согнувшись в три погибели. Гук решил усовершенствовать прибор. Для начала он сделал тубус наклонным. Затем биолог установил перед прибором масляную лампу для лучшего освещения. Потом к нему пришла мысль усилить свет за счет солнечных лучей и сконцентрировать его. Так появился большой стеклянный шар, наполненный водой. За ним была установлена специальная линза. Эта оптическая система в сотни раз усиливала яркость освещения.

Ученые сделали вывод: одноклеточные — такие же живые существа, как, к примеру, слон или человек. С тех пор все живое делится на две группы — одноклеточные и многоклеточные.

Со временем в группу одноклеточных попали все виды бактерий, некоторые грибы, растения и животные. К одноклеточным грибам отнесли дрожжи; к одноклеточным растениям — водоросли хлореллу и хламидомонаду; к одноклеточным животным — амебу, инфузорию туфельку и трубача.

Группа многоклеточных оказалась многочисленнее. В нее вошли растения, грибы, животные и человек. Их организмы состоят из множества видов клеток, каждая из которых играет определенную роль. Клетки, сходные по строению и функциям, образуют ткани. Покровные ткани защищают организм от травм и вредных воздействий. Органы растений, животных и человека тоже состоят из тканей. Растительные ткани образуют корни и листья; животные — мышцы, сердце, желудок, печень, почки.

Строение клетки

Животные и растительные клетки имеют схожее строение. Внутри клетка заполнена цитоплазмой, в которой «плавают» внутренние компоненты.

Главный орган клетки — ядро, покрытое пористой оболочкой. Сквозь поры в ядро и обратно поступают питательные вещества и отходы. Ядро заполнено соком, в котором находятся ниточки молекул ДНК и ядрышко. Ядро — главнокомандующий, оно управляет всеми процессами внутри клетки и заведует важной генетической информацией.

Помимо ядра, вакуолей и цитоплазмы внутри клетки присутствуют и другие органоиды. И в животных, и в растительных клетках есть вакуоли — пузырьки, заполненные клеточным соком. Они отвечают за хранение питательных веществ, обезвреживание ядов и вывод отходов. Митохондрии — производители энергии. Они помогают клетке дышать, размножаться, расти. Аппарат Гольджи отвечает за производство, хранение и доставку веществ в разные части клетки. Рибосомы в ответе за выработку белка — строительного материала. Лизосомы, мешочки с ферментами, которые ускоряют процессы в организме, переваривают пищу. Пероксисомы тоже содержат ферменты. Они нейтрализуют вредные вещества и разрушают жиры.

Читайте также:  Растения с мочковатым корнем подсолнечник

У растительных и животных клеток есть и отличия
  • В растительной клетке присутствуют пластинки зеленого цвета, хлоропласты. Они помогают клетке получать питание из солнечных лучей. Животные клетки не умеют самостоятельно вырабатывать «еду», им приходится добывать питательные вещества из съеденной пищи. Исключение из мира животных — микроорганизмы жгутиконосцы, которые днем вырабатывают питательные вещества на свету, а ночью добывают готовую пищу.
  • Животные клетки имеют округлую форму. Их оболочка пластичная и гибкая, что позволяет им растягиваться и изменять внешний вид. Прямоугольные клетки растений защищены менее податливой стенкой, которая не дает им трансформироваться.
  • Отличаются клетки и за счет вакуолей. У растений они крупные, но немногочисленные, у животных, наоборот, мелкие, но в клетке содержится целая россыпь. Растительные вакуоли предназначены для запаса питательных веществ, животные отвечают за переваривание пищи и сокращение. А питательные вещества животной клетки хранятся в цитоплазме.

Клетки бывают крупных размеров. Например, клетка стебля льна достигает 40 мм, а клетка мякоти арбуза — 1 мм. Их видно невооруженным глазом.

Митохондрии и хлоропласты

Все клетки нуждаются в питании, которое они получают при помощи митохондрий и хлоропластов.

Митохондрии производят аденозинтрифосфорную кислоту (АТФ). Это своеобразный аналог батарейки, которая вырабатывает, хранит и распределяет между органоидами энергию. Активные клетки расходуют большое количество энергии, и митохондрий в них много. Если внутренние процессы в клетке протекают вяло, избыток энергии ни к чему. В такой клетке митохондрий мало. Митохондрии могут иметь спиралевидную, округлую, чашевидную и нитевидную формы и даже способны трансформироваться. Они передвигаются внутри клетки. Эти частички словно чувствуют, какая часть клетки остро нуждается в энергии, и спешат именно туда.

Хлоропласты — такие же «энергетические фабрики» в клетках зеленых растений. Они достигают в ширину 2-4 микрометров, в длину — 5-10 микрометров. У зеленых водорослей встречаются хроматофоры — гигантские хлоропласты длиной 50 микрометров. Таких хроматофоров может содержаться всего по одному на клетку.

В хлоропластах содержится пигмент хлорофилл, который окрашивает растения в зеленый цвет и участвует в важнейшем процессе — фотосинтезе. При помощи хлорофилла зеленые растения поглощают солнечный свет и перерабатывают его в органические вещества.

Ядро клетки

Самая первая живая клетка зародилась на планете миллионы лет назад. Ученые до сих пор спорят о том, когда и как она появилась: в воде или на суше, из каких частиц, в каких условиях.

В поиске истины ученые выдвинули две теории происхождения клеток: клеточную и теорию биогенеза. Клеточная теория стала основополагающей. В середине XIX века после долгих исследований немецкие ученые Маттиас Шлейден и Теодор Шванн впервые заявили: абсолютно все живые организмы на Земле состоят из клеток. Так появилась клеточная теория. Немногим позднее Рудольф Вирхов высказал мнение о том, что живая клетка может произойти только от живой клетки, а ее спонтанное появление из неживой материи невозможно. Выходит, жизнь была всегда. Вечно. Это стало главным утверждением биогенеза.

Оказывается, не у каждой клетки есть ядро. Да-да, существуют организмы, способные выжить без этого важнейшего компонента. Исходя из этого, современные ученые выделяют два вида клеток: прокариотические и эукариотические. Названия этих групп произошли от древнегреческого языка. Слово «карио» переводится как ядро, приставка «про» — до, «эу» — хорошо. Значит, прокариоты — это организмы, клетки которых не содержат ядра. К доядерным относятся бактерии, сине-зеленые водоросли и археи — древнейшие одноклеточные.

Эукариоты — это растения, животные, грибы. Они могут быть как многоклеточными, так и состоять из одной-единственной клетки. Представителей этой группы объединяет наличие в клетке ядра.

В целом эукариотические клетки отличаются от прокариотов сложностью своей конструкции. Биологи считают, что прокариоты — предки эукариотов, которые в процессе эволюции начали объединяться, образуя многоклеточные организмы.

Симбиогенез. История о том, как съеденная жертва стала звеном эволюции

Между живой клеткой и большинством высокоупорядоченных небиологических систем, таких как кристалл или снежинка, существует пропасть настолько обширная и абсолютная, как только можно представить»

Майкл Дентон, британско-австралийский биохимик

Миллионы лет назад, когда начала зарождаться жизнь, Землю населяли одноклеточные безъядерные создания. Они жили, питались и размножались. Крупные особи пожирали мелких. Однажды кроха, проглоченная «хищником», выжила внутри его организма и поселилась там. Поскольку внутри одноклеточного прокариота была лишь цитоплазма, кроха прижилась в ней. Спустя годы эволюции съеденные микроскопические организмы превратились в митохондрии и хлоропласты. На самом деле все происходило не так быстро, как может показаться.

Читайте также:  С какими растениями и деревьями растет дуб

Эукариоты образовывались в несколько этапов
  • Первый симбиоз. Сначала прокариот, по форме напоминающий амебу, поглотил мелкие бактерии. Бактерии со временем превратились в митохондрии.
  • Второй симбиоз. Клетка с митохондриями поглотила спиралевидные бактерии. Так образовались прокариоты со жгутиками, митохондриями и клеточными мембранами. Из мембран сформировалась оболочка ядра. Из ДНК и белков получились хромосомы. Из жгутиковых эукариотов произошли первые ядерные организмы — простейшие и одноклеточные грибы.
  • Третий симбиоз. В результате третьего симбиоза появились одноклеточные водоросли. На этот раз «жертвами» жгутиковых прокариотов стали цианобактерии, из которых возникли хлоропласты. Так за миллионы лет эволюция вырастила из одноклеточных организмов многоклеточные.

Источник

Растительные и животные клетки

Все органы животных и растений состоят из клеток. Основными компонентами растительных клеток являются ядро, вязкая жидкость под названием цитоплазма, оболочка, вакуоль и множество других органоидов различного строения и функций. Оболочка покрывает клетку снаружи, под ней находится цитоплазма, а в ней — ядро и одна или несколько вакуолей.

Животная клетка окружена мембраной, которая пропускает одни вещества и задерживает другие. Внутри нее, как и в растительной клетке, находятся цитоплазма и защищенное мембраной ядро, содержащее наследственный материал. В цитоплазме есть маленькие структуры — органоиды, отвечающие за жизнедеятельность клетки.

Многоклеточные организмы, как растительные, так и животные, состоят из множества клеток различных типов, выполняющих разные функции. Эти клетки образуют ткани.

Ткань — это система клеток и неклеточных структур, которые объединены общими функциями, строением и происхождением.

Чем питались первые клетки?

Каким бы странным показался ответ, но первые клетки питались, скорее всего, первичным бульоном, тем, из которого они образовались. Большое количество белков, жиров и аминокислот позволяло клеткам жить и размножаться. Они стали родоначальниками клеток животных. На протяжении миллионов лет запасы продовольствия постепенно сокращались. В результате стали образовываться новые клетки — так называемые продуценты. Они смогли развить способность создавать для себя пищу из окружающего строительного материала, используя энергию Солнца или тепло Земли. Эти клетки положили начало всему растительному миру.

Источник

Сходство и различия строения клеток растений и животных

Клетки животных и растений схожи между собой, поскольку они являются эукариотическими клетками, имеющими истинное ядро, которое содержит ДНК и отделено от других клеточных структур ядерной мембраной. Оба типа клеток имеют сходные процессы размножения (деления), которые включают митоз и мейоз.

Животные и растительные клетки получают энергию, используемую ими для роста и поддержания нормального функционирования в процессе клеточного дыхания. Также, характерным для обоих типов клеток является наличие клеточных структур, известных как органеллы, которые специализированы для выполнения конкретных функций, необходимых для нормальной работы. Животные и растительные клетки объединяет наличие ядра, комплекса Гольджи, эндоплазматического ретикулума, рибосом, митохондрий, пероксисом, цитоскелета и клеточной (плазматической) мембраны. Несмотря на схожие характеристики животных и растительных клеток, они также имею множество различий, которые рассмотрены ниже.

Основные различия в клетках животных и растений

Прокариотические клетки

Эукариотические клетки животных и растений также отличаются от прокариотических клеток, таких как бактерии. Прокариоты обычно являются одноклеточными организмами, тогда как животные и растительные клетки обычно многоклеточные. Эукариоты более сложны и больше, чем прокариоты. К клеткам животных и растений относятся многие органеллы, не обнаруженные в прокариотических клетках. Прокариоты не имеют истинного ядра, поскольку ДНК не содержится в мембране, а свернута в области цитоплазмы, называемой нуклеоидом. В то время как животные и растительные клетки размножаются митозом или мейозом, прокариоты чаще всего размножаются с помощью деления или дробления.

Другие эукариотические организмы

Клетки растений и животных не являются единственными типами эукариотических клеток. Протесты (например, эвглена и амеба) и грибы (например, грибы, дрожжи и плесень) — два других примера эукариотических организмов.

Источник

Adblock
detector